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Abstract 

This paper analyzes a prospective Social Security reform that a number of authors have 
suggested, namely a payroll tax cut targeted on households near retirement. Our approach uses 
simulations of a life-cycle model, which we estimate from panel data. The simulations study 
effects on the labor force participation of older households. This paper specifically attempts to 
improve estimates of the model by incorporating newly available data, using both retirement and 
wealth accumulation data, and employing a formulation that avoids local optima to isolate only 
global maxima. Despite the changes, our results are generally consistent with earlier work, 
though they point to slightly more limited policy benefits. 
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1. Introduction 

Laitner and Silverman (LS) “Consumption, Retirement and Social Security: 
Evaluating the Efficiency of Reform that Encourages Longer Careers” [2012] uses a 
structural model to examine the costs and benefits of age-specific changes in the Social 
Security payroll tax. The authors find that substantial efficiency gains are possible from a 
payroll tax reduction targeted at ages near retirement, even if the tax reductions are coupled 
with increases at earlier ages that make the policy revenue neutral overall. The present 
paper attempts to re-examine the analysis with the aid of recent data and a more elaborate 
methodology — with the goal of developing an even stronger framework for policy analysis. 

On the one hand, we modify Laitner and Silverman’s modeling formulation. (i) The 
present paper explicitly solves the underlying life-cycle formulation for each household’s 
optimal retirement age — checking sufficiency conditions at each observation rather relying 
on necessary conditions alone. The analysis is more accurate and more easily interpretable 
(see below) with this approach. (ii) This paper utilizes a treatment of agent lifetime 
earning profiles that allows heterogeneity in profile steepness. In the model, the steepness 
of a household’s earnings profile is a key determinant of its optimal retirement age. We 
have access to panel data on earnings that is rich enough to facilitate a detailed study of 
this factor. (iii) The life-cycle model predicts a household’s retirement age and its wealth 
accumulation as well. Both have significant roles in the policy evaluation literature. We 
have the data resources to study them jointly, and this paper utilizes a two-equation 
estimation approach to do so. New possibilities for model verification arise. (iv) We provide 
an upgraded treatment of selection, along the lines of Heckman’s well-known 2-step 
method. We can handle cases in which a household dies or leaves the sample before retiring, 
and in which a household retires prior to the first survey wave but never specifies when. 

On the other hand, the present paper seeks to take advantage of new data availability. 
Following the earlier work, we use the original HRS cohort, with survey respondents aged 
51-61 in 1992. As before, we have (restricted) data that links Social Security earnings 
histories to men and women in the HRS. Instead of HRS survey data 1992-2002, how­
ever, this paper has waves for 1992-2014. Rather than having many households that have 
not yet retired, in the updated data virtually all careers are complete. The size of the 
sample with linked Social Security earnings histories is larger than before as well, with 
the administrative-record earnings data now covering 1951-2013. In addition, the present 
paper makes extensive use of Rand-processed HRS data files. This makes our work com­
patible with other studies using this well-known data. 

We find that our life-cycle model parameter estimates are qualitatively similar to 
those in LS [2012]. They are not identical, however, and have tighter confidence intervals. 
Importantly, our analysis can be done using either data on retirement ages or household 
wealth accumulation, and we show that the two approaches yield similar outcomes. In 
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fact, we show that using both data sources simultaneously yields more precise estimates 
than either generates individually. 

Section 4 presents policy simulations. In times of lower fertility and longer life spans, 
the rate of labor force participation for older households is a topic of great interest.1 

Lowering the payroll tax beyond some age — in effect, allowing a household’s Social 
Security rights to become fully vested — has been proposed as a way of encouraging longer 
careers.2 A distinctive feature of our analysis is that it seeks to examine the consequences 
of such a reform using a model with estimated parameters. We find that our new parameter 
estimates are fully consistent with the idea that a policy with an age-varying payroll tax 
rate could promote higher labor force participation and greater economic efficiency. The 
increases in labor force participation that we find are slightly smaller than LS [2012], but 
we suggest explanations for the difference. 

The organization of this paper is as follows. Section 1 sets up our modeling formu­
lation. Section 2 reviews our data on household earnings and provides new regression 
results. Section 3 analyzes our complete life-cycle model. We provide structural-model 
parameter estimates, using both retirement and networth data. Section 4 briefly presents 
policy simulation results. Section 5 concludes the paper. 

2. Model We begin with a model in which households face no uncertainty. Section 2B, 
however, presents a re-formulation that incorporates a random chance of disability. 

2A. Certainty Specification We present our model and then characterize its solution. 
If a household’s consumption at age s is Xs and its size as measured in “equivalent 

adults” is Ns, its utility flow is ⎧ 
1 · N · [ ωs ·Xs ]γ , for γ < 1 , γ �= 0  ,⎨ γ s Ns 

U(Xs , s) =  (1) ⎩ 
Ns · ln(ωs ·Xs ) , if γ = 0  .Ns 

The parameter ωs, which captures the complementarity between time at home and con­
sumption of goods, satisfies  

1 , if s < R ,  
ωs ≡ (2) 

ω ,  if s ≥ R ,  

where R is the household’s age of retirement and 

ω > 1 

1 See, for example, the 2017 Report to the Social Security Advisory Board, 
http://ssab.gov/Details-Page/ArticleID/1180/Technical-Panel-on-Labor-Force­
Participation-A-Report-to-the-Board-June-2017.

2 E.g., Laitner and Silverman [2012], Goda et al. [2009], Burtless and Quinn [2002], 
and others. See also Banks and Diamond [2010], Erosa and Gervais [2002], Kremer [2002], 
Lozachmeur [2006], Weinzierl [2011], and others. 
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measures the benefit of the extra time at home after retirement. We estimate the magnitude 
of ω below. The number of equivalent adults is 

KNs = 1 +  χS (s) · ξS + χK (s) · ξ , (3) 

where χS (s) is 1 if a spouse is present at household age s and 0 otherwise, and where χK (s) 
is the number of children present at age s. We estimate the spouse and “kid” weights, 
ξS > 0 and  ξK > 0, respectively, below. 

Isoelastic utility function (1) ensures homotheticity. In other words, households with 
above or below-average earnings should not necessarily have atypical retirement ages. 
Rather lifetime earnings profile shapes and household demographics should be the source of 
cross-sectional heterogeneity in retirement ages. We estimate the key parameter γ, which  
determines the model’s intertemporal elasticity of substitution 1/(1 − γ). 

The households in our model are couples. A household retires when its male spouse 
retires.3 “Age s” is years since the male’s birth. The household begins when s = S and 
retires when s = R. The male dies when s = TM . The female dies at age TF . If  the  
husband’s age minus the wife’s is Δ, the household ends when s = T with 

T ≡ max {TM , TF + Δ} . 

The household choice variables in our analysis are retirement age R and consumption 
expenditure life trajectory Xs , s ∈ [S , T ]. 

For analytic convenience, we divide a household’s life-cycle into 2 segments, pre­
retirement and post-retirement. Our analysis works backward from the latter to the former, 
as in dynamic programming. 
Post-Retirement. Consider a household’s behavior after retirement. Let A be the private 
networth the household has accumulated at retirement (including the capitalized present 
value, at s = R, of its private pensions). Given retirement age R, let  B(R) be the capital­
ized lifetime value of the household’s Social Security and Medicare benefits, claimed at the 
“normal retirement age” (NRA) and age 65, respectively, but converted to present value 
at s = 0. The after-tax interest rate is r, and the subjective discount rate is ρ. Household  
private networth at age s is As. If the household’s post-retirement utility is V (.), then  T  −ρ·sV A + B(R) · e r·R , R ≡ max e · U(Xs , s) ds (4) 

Xs R 

˙subject to: As = r · As − Xs , 

r·RAR = A + B(R) · e and aT ≥ 0 . 

There may be incentives to retire at particular ages implicit in some defined benefit 
private pension plans or employer-provided health insurance — e.g., Ippolito [1997]. Here 

We treat the wife’s earnings as exogenous. The model can be generalized to make 
spouses’ retirement ages endogenous (e.g., House et al. [2007]). For the present estimation 
and policy simulations, that remains a topic for future research. 
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we adopt the view that both employers and workers are heterogeneous in their preferences 
about retirement and that workers choose employers whose preferences match their own. 

Pre-Retirement. Proceeding to the pre-retirement stage of life, let a household’s age-s 
male and female earnings flows be yM (s) and  yF (s), respectively, where 

⎧ 
M⎨ eM (k , s) · ws · (1 − τ − τSS) , for S ≤ s < R ,  s 

y M (s) ≡ (5) ⎩ 
0 , for s ≥ R ,  

and 

F y F (s) ≡ e F (k , s) · ws · (1 − τ − τSS) . (6) s 

MThe male spouse’s “effective hours” or efficiency, is measured by e . Different households 
have different labor efficiencies, as explained below. In all cases, however, efficiency depends 

Mupon work experience, k , and age s. We assume a male spouse works steadily for s 
s ∈ [S , R). Thus, 

Mk = s − S for s ∈ [S , R) . (7) s 

The market wage per effective hour is ws. The OASI, SSDI, and Medicare hospital payroll 
tax is τ (which includes both worker and employer shares). Our formulation subsumes 
income taxes on earnings in τ . 

Female-spousal labor force participation years and earnings are exogenous in this 
Fpaper. Female effective hours depend on cumulative work experience k and age. In s 

practice, female careers sometimes have gaps of non-participation; thus, we cannot in 
Fgeneral assume k has the simple form of (7). As stated, in this paper female participation s 

years and earnings are taken to be exogenous. 
A household’s lifetime utility is 

R 
−ρ·smax e · U(Xs , s) ds + V AR + B(R) · e r·R , R  (8) 

R , Xs S 

subject to: Ȧs = r · As + y M (s) +  y F (s) − Xs , 

AS = 0  . 

Our model has neither inheritances nor bequests. 

Analysis. For  a  given  R, the pre and post-retirement problems are standard and concave. 
We have 
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Proposition 1: Let a household have retirement age R. Then the household’s optimal 
behavior satisfies 

r−ρ ·(s−S)Xs/Ns = (XS /NS ) · e 1−γ all s <  R ,  (9) 

1−γXR+/NR+ = [ω] 
γ · (XR−/NR−) , (10) 

·(s−R)1−γXs/Ns = (XR+/NR+) · e 
r−ρ 

all s ≥ R .  (11) 

Proof: See LS [2012]. 

∗The  idea  is as follows.  Let  R be given. Let x be optimal consumption expenditure s 
per equivalent adult. Then conventional first-order conditions from optimal control theory 
yield 

∗ ∗ ·s1−γx = x · e 
r−ρ 

all s ∈ [S ,  T  ] . (12) s 0 

Optimality requires continuity of the Hamiltonian’s costate variable. In our context, the 
costate variable equals ∂U/∂Xs. When household composition changes, continuity across 
the change point yields (9) and (11). At retirement, higher leisure raises the value of 
consumption expenditures. Continuity of the costate then requires (10). Combining (9)­
(11), the optimal household expenditure trajectory X∗ obeys s ⎧ ∗ ⎨ Ns · xs , for s < R, 

X ∗ = (13) s γ⎩ 
Ns · [ω] 1−γ · x ∗ 

s , for s ≥ R. 

In other words, given our equivalent-adults formulation, optimal household consumption 
changes in proportion to household composition over time. And, the increase in time 
at home after retirement requires a permanent proportional adjustment in consumption 

∗expenditure all s ≥ R. We explain how to derive x below. 0 
Note that time at home and consumption expenditure are complementary in our setup. 

With more time at home after retirement, households naturally want more consumption 
expenditure. On the other hand, households want to smooth their total flow of “services,” 
which are a composite of time at home and consumption expenditure. The desire to 
smooth makes a household want to have lower consumption expenditure after retirement. 
If the intertemporal elasticity of substitution (IES) is large — as when γ ∈ (0 , 1) — the 
effect of complementarity dominates and the household chooses to raise its consumption 
expenditure after retirement (see (10)). If the IES is low — as when γ <  0 —  the desire  to  
smooth dominates and a household lowers its consumption expenditure after retirement. 
When γ = 0 — which is the logarithm case in (1) — complementarity and the desire to 
smooth exactly offset and a household does not change its consumption expenditure at 
retirement at all. 
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Discussion. Our underlying framework is familiar, as the basic isoelastic preferences are 
very commonly employed to ensure homotheticity. Our interaction of leisure and con­
sumption expenditure in (1) recognizes the importance for households of time away from 
work. As Proposition 1 shows, provided γ = 0 households behaving optimally will want 
to adjust their consumption expenditure — downward if γ <  0 or  upward  if  γ >  0 —  
after retirement in response to the increase in leisure. See also LS [2012]. Gustman and 
Steinmeier [2004], for example, can be viewed as a special case that imposes γ = 0.  

Optimal Retirement. Next, we characterize the optimal choice of R. 

Proposition 2: Suppose that yF (s) is exogenously given. Define 

B'(R) · er·R + yM (R) 1 − γ 
G(R) ≡ − (Ω − 1) · , (14) 

XR− γ 

1−γΩ ≡ [ω] 
γ 

. 

Then necessary conditions for an optimal retirement age R = R∗ are 

G(R ∗) = 0  and G'(R ∗) ≤ 0 . (15) 

Proof: See LS [2012]. 

The idea of Proposition 2 is as follows. Let R = R∗ and consider delaying retirement 
by dR. The gain in lifetime utility should equal the loss. The gain includes U(XR ) dR 
less the value of resources expended, U '(XR−) · XR− dR, plus income and increased Social 
Security benefits, U '(XR− )· [yM (R)+B'(R)· er·R ] dR. And, similarly for the losses. Hence, 
using (10), we need4 

[NR]1−γ · [U(XR−) − U '(XR−) · XR− + U '(XR− ) · (B'(R) · e r·R + y M (R))] 

= [NR]1−γ · Ω · [U(XR−) − U '(XR−) · XR−] . 

Dividing by [XR−]γ and [NR]1−γ , we  have  

1 − γ B'(R) · er·R + yM (R) 1 − γ B'(R) · er·R + yM (R) 1 − γ 
+ = Ω  · ⇐⇒ = (Ω  − 1) · . 

γ XR− γ XR− γ 

Although 
r·Rd [B(R) · e r·R ]/d R = B'(R) · e r·R + r · B(R) · e , 

the second term on the RHS enters both sides of the next equation; hence, it cancels. 
Thus, it does not enter (14). 
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The left-hand part of (15) is the first-order necessary condition. The right-hand part 
is the corresponding second-order necessary condition. Sufficiency, on the other hand, is 
not guaranteed: B'(R) · er·R + yM (R) may  well  rise  with  R at first but fall thereafter; 
XR− = xR− · NR and xR− will rise with R if (r − ρ)/(1 − γ) > 0; and, Ns at age s = R 
can (discontinuously) rise or fall with different values of R. 

Solution. We can now complete our solution. Eqs (12)-(13) determine the shape of a 
∗household’s optimal consumption expenditure trajectory up to a scaling factor x . Thus,  0

we can determine a function H(R) such that the lifetime cost, in present value at s = 0,  
of the household’s optimal consumption expenditure is 

R T  ∗ ∗ z·t z·t x · H(R) ≡ x0 · e · Nt dt + Ω  · e · Nt dt , (16) 0 
S R 

r − ρ 
z ≡ − r .

1 − γ 

Let the present value at s = 0 of the male and female spouses’ lifetime earnings be Y M (R) 
and Y F , respectively. Let M be the lifetime value, in present value at s = 0,  of  the  
household’s Medicare benefits. Then for a given R, 

r·R ∗ Y M (R) +  Y F + M + B(R) · e = x · H(R) ⇔0 
r·RY M (R) +  Y F + M + B(R) · e∗ x = . (17) 0 H(R) 

∗ ∗ = X∗ 

Proposition 2. Our procedure is to solve (15) and (17) simultaneously. 
In practice, we set a grid of values for R: Rj , j  = 1, ..., J . For  R = Rj , we use (12)­

Given x0 = x0(R), we can determine XR− R− and, therefore, the function G(R) from  

(13) to set the shape of the optimal lifetime consumption expenditure trajectory. Then 
∗we derive x from the household’s lifetime budget constraint. We look for sign changes, 0 

G(Rj ) > 0 > G(Rj+1). For each sign change, we find the root R ∈ (Rj , Rj+1). Such a 
root corresponds to a local maximum. We check lifetime utility for each local maximum. 
The global maximum establishes R = R∗ . 

2B. Specification with Uncertain Disability We next add disabilities that exoge­
nously arise, with random timing. Assume disability compels retirement. Social Security 
Disability Insurance (SSDI) replaces part of the lost earnings, and we assume that private 
insurance covers the remainder. In other words, we assume full insurance. 

Suppose there is a hazard λ into disability. Take the simplest case, in which λ does 
¯not vary with age. Assume the possibility of disability begins at age S ≥ S. If  P (t) is  the  

probability of being disabled at age t, 

t 
−λ·(s− ̄ −λ·(t−S̄)P (t) =  λ · e S) ds = 1  − e . (18) 

S̄
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Insurance. Let the cost of private insurance be K(R) if the household’s planned retirement 
age is R. Assume the cost is measured in present value at age s = 0 and is assessed as a 
one-time-only insurance premium at time 0.5 The premium has 4 components, as follows. 
Income Replacement Component The fully insured value of a household’s male earnings, 
in present value at age 0, assuming retirement age R, is  

R 
−r·t MY M (R) =  e · yt dt . (19) 

S 

To eliminate uncertainty, private insurance must fully replace earnings lost to disability. 
Let the insurance cost for this be IY (R). Then 

R R 
−λ·(s−S̄) −r·t MIY (R) =  λ · e · e · y dt ds . (20) t 

S̄ s 

Changing the order of integration, 

R t 
−λ·(s−S̄) −r·t MIY (R) =  λ · e e · yt ds dt 

S̄ S̄

R 
−r·t M= P (t) · e · yt dt . (21) 

S̄

Thus, IY (R) is the product of the probability P (t) of being disabled at t and the present 
value of earnings lost, summed over the possible ages of disability. 
SSDI Component The value of SSDI benefits, ID(R), offsets part of the earnings loss. 
(Hence, it enters the total insurance premium with a negative sign.) We assume that 
a household becoming disabled at age s receives an SSDI benefit equaling its normal 
retirement age OASI benefit for its average earnings so far, without penalty for a short 
earnings history. Let D(s) be the SSDI benefit flow if disability occurs at age s. The  
benefit flow disappears when the household reaches the Social Security normal retirement 
age (NRA), with OASI benefits commencing as a replacement. Thus, 

min{R,N RA} NRA  
−λ·(s−S̄)ID(R) =  λ · e · D(s) · e −r·t dt ds . 

S̄ s 

Performing the integration with respect to t, 

min{R,N RA} −r·s − e−r·NRA  
−λ·(s−S̄) e

ID(R) =  λ · e · D(s) · ds . (22) 
S̄ r 

OASI Adjustment Because a household’s earnings tend to rise as its experience increases 
and because Social Security incorporates a correction for macroeconomic wage growth at 

Our model has no liquidity constraints; hence, the timing of the insurance premium 
makes little difference. 
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claiming, a disabled household will almost invariably have lower OASI benefits once it 
reaches the NRA than otherwise. Let the insurance cost of offsetting any such reduction 
be IB (R). Following notation similar to the preceding section, let B(R) be the present 
value at age 0 of the household’s OASI benefits from the NRA  until T if the household 

6retires at age R. Let B(s) be the same for benefits from the NRA  until T if the household 
becomes disabled at age s. Then the age-0 present value of the OASI correction is 

R 
−λ·(s−S̄)IB (R) =  λ · e · [B(R) − B(s)] ds 

S̄

R 
−λ·(s− ̄= P (R) · B(R) − λ · e S) · B(s) ds . (23) 

S̄

As explained above, we expect IB (R) > 0 — so  that  IB (R) will tend to make a 
household’s total insurance premium larger. 

Consumption Turning to a household’s consumption expenditure, Proposition 1 gives 
the optimal profile shape. The optimal shape includes a correction, via multiplication 
by Ω < 1, once a household has retired. A fully-insured household follows the optimal 
profile shape. If it plans to end its labor force participation at age R, its expected lifetime 

∗consumption expenditure is x · H∗(R), where 0 

R R̄ T 
−λ·(R̄−S̄) z·t z·tH ∗(R) ≡ λ · e · e · Nt dt + Ω  · e · Nt dt dR ¯ 

S̄ S R̄
R T 

z·t z·t+ [1  − P (R)] · e · Nt dt + Ω  · e · Nt dt , (24) 
S R 

with P (t) as in (18) and z as in (16). Changing the order of integration in the first term 
and letting H(R)  be as  in  (16),  we have  

H ∗(R) =  H(R) +  J(R) , (25) 

R 
z·tJ(R) ≡ [Ω − 1] · P (t) · e · Nt dt . (26) 

S̄

Recall that Ω < 1. Thus, the change of disability makes H∗(R) < H(R). The reasoning 
is as follows: Disability affects consumption to the extent that it forces early retirement. 
The probability of disability at t < R  is P (t). If disability occurs at age t, the height of 

z·t z·tthe optimal consumption profile drops from e · Nt to Ω · e · Nt. 

Recall that we assume OASI benefits are always claimed when a household reaches 
the NRA. With certain age of death and no liquidity constraints, this entails no loss of 
generality. 
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Solution. In the case of stochastic disability, our solution is as follows. 
We replace (17) with 

∗ Y M (R) − [IY (R) − ID(R) +  IB (R)] + Y F + M + B(R) =  x · [H(R) +  J(R)] . (27) 0 

∗That determines x0: 

Y M (R) − [IY (R) − ID(R) +  IB (R)] + Y F + M + B(R)∗ ∗ x = x (R) =  . (28) 0 0 H(R) +  J(R) 

The age-0 insurance premium for retirement age R is 

∗ K(R) ≡ IY (R) − ID(R) +  IB (R) +  x (R) · J(R) . (29) 0

Each term in (29) tends to be positive except J(R). Finally, we need to amend the 
definition of G(R) in  Proposition  2  to  

B '(R) · er·R − K '(R) · er·R + yM (R) 1 − γ 
G(R) =  − (Ω − 1) · . (30) 

XR− γ 

Think of the household’s behavior as follows. Taking into account the cost of insur­
ance, at s = S a household determines its optimal retirement age R∗ from (15), with G(.) 
as in (30). The household pays K(R∗) to purchase private insurance — see (29). It then 
begins consuming according to (12)-(13). When it becomes disabled or reaches s = R∗ , 
whichever is first, it switches its consumption expenditure to the second part of (13). In­
surance enables the household simultaneously to balance its lifetime budget and follow its 
optimal consumption expenditure trajectory. 

Notice that we could rather easily generalize the treatment of disability to consider 
¯multiple Poisson shocks. Thus, we could, for instance, have (λi , Si) for  i = 1  , 2. The 

advantage would be as follows: In practice, the hazard to disability tends to rise with age. 
¯ ¯We could, therefore, have S1 < S2. At early ages, the hazard to disability would be λ1. 

¯However, after S2, it  would  be  λ1 + λ2. 

3. Estimation Our estimation proceeds in 3 steps. 

3A. Step-1: Analysis of Earnings In the first step, we estimate earnings dynamics 
equations for both spouses in each couple. There is a censoring problem in that basic 
administrative record earnings data is top coded at the Social Security cap. We use a 
Tobit maximum likelihood approach to cope with this issue. 
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Data. We use SSA administrative lifetime earnings records to  estimate  earnings dynamics  
equations for men and for women. We estimate separate equations for 4 education groups: 
less than high school, high school, some college, and 4 years of college or more. 

As stated, we study the original HRS cohort, aged 51-61 in 1992, using the HRS survey 
waves for 1992, 1994,..., 2014. We limit our attention to households that are couples in 
1992 with both spouses alive and married only once. (If a couple divorces later, we drop 
it for subsequent dates.) For a link to administrative record earnings data, the agent must 
have granted permission for SSA to provide his/her Social Security earnings history to the 
HRS. Table A1 in the Appendix provides details on the samples. 

The earnings data, taken exclusively from the administrative records, has the following 
special features: 

Censoring Earnings are subject to the Social Security payroll tax only up to a statutory 
cap, and earnings histories only record amounts up to the latter. (The cap has, of course, 
changed over time.) Tables A2-A3 — see the Appendix — show the extent of the censoring 
is large. The earnings reports cover, at most, 1951-2013. We use “earnings adjusted for the 
taxable maximum.” See “Health and Retirement Study Respondent Cross-Year Summary 
Earnings Data Description and Usage,” Version 4.0, December 2014. 

A second restricted data set, see “Health and Retirement Study Respondent Cross-
Year Earnings Data Description and Usage,” Version 4.2, May 2015, contains supplemen­
tary W2 information for 1978 and beyond. In particular, it contains Medicare HI earnings. 
Through 1990, this measure of earnings has the same cap as the Social Security payroll 
tax. After 1990, however, the HI cap is higher. In fact, after 1994, there is no HI cap 
at all. For privacy reasons, even after 1994 a degree of censoring remains: HI earnings 
of $250-299,000 are top-coded at $250,000; $300-499,000 at $300,000; and, those above 
$500,000 at $500,000. Although the second data set does not add new observations, its 
higher top codes can augment the informational content of the basic files considerably in 
some cases. 

Narrow Birth Range The initial HRS respondents were born 1931-41 (though our sample 
includes their spouses, who have a somewhat wider birth-date range). The age range is 
so narrow that an earnings dynamic model’s typical treatment, in which earnings are a 
function of a polynomial in experience and of a system of year dummies, will be subject 
to multi-collinearity problems. Growth theory, on the other hand, suggests that the time 
trend of wages should mimic the macroeconomic growth of the average product of labor. In 
this vein, we deflate real earnings by the annual average level of labor productivity, which 
we measure with real private-sector value added divided by labor input (see historical 
multi-factor productivity tables, BLS.GOV/MFP/TABLES.HTM). 

Tax Base Social Security earnings measure, of course, the Social Security tax base. The 
latter reflects factor payments to labor excluding employer Social Security taxes, employer 
paid pension contributions, and employer paid health insurance. To correct for the exclu­
sions, we multiply our Social Security earnings by the year’s ratio of total compensation 
(i.e., NIPA compensation of employees in domestic industries — NIPA Table 6.2, line 2) 
to wage and salary accruals (i.e., NIPA wage and salary accruals in domestic industries — 
NIPA Table 6.3, line 2). 

11
 



 

   

Work Hours and Retirement The Social Security earnings histories may have gaps from 
non-FICA jobs — or from unemployment and other non-participation. For male earnings, 
we merely assume full participation from 

starting age = max {years of education + 6 , 16} (31) 

until the age of retirement. 
We determine the age of retirement from “Rand HRS Data Documentation,” Version 

P, August 2016, Section I, and Section J. In Section I, we have a date for complete or 
partial retirement. We use the earlier of the two. If there is no such date, we take the last 
year for full-time work from Section J as a lower bound for the household’s retirement age 
— and the household enters our censored retirement category in step 2 below. Households 
with no retirement date in Section I and no record of full-time work in Section J are 
excluded. Other households that do not retire in sample are retained, however, and enter 
our censored-retirement category in step 2 as well. 

Price Index We deflate earnings with the PCE deflator, using 1984 as the base year. 

Male Earnings Dynamics Model. We use a standard earnings dynamics model to process 
the earnings data. 

For males, we use the starting age from (31), calculating years of experience, expit, 
at that and all future ages. Let yit be constant-dollar Social Security earnings, inclusive 
of benefits (see above). Our statistical model for Tables A2A-A2B — see Appendix — is 

ln(yit) =  fE (expit ) +  μi + Eit , (32) 

where fE (expit ), our “earnings” function, is a quadratic 

2 

fE (exp) ≡ β0 + β1 · exp + β2 · exp
; (33) 

100 

μi is the (random) individual effect for male i; and, Eit is an iid regression error. 
We know which earnings observations are censored from top coding (including many 

top coded at the Social Security earnings “cap” — see above). Let “group 0” be uncensored 
observations, and “group 1” be censored. Let censored earnings be ȳi; let  

∗ yit , if group 0, 
it ≡y

ȳit , otherwise; 

and, let 

∗ eit ≡ ln(yit) − fE (xit) − μi . 

Then the likelihood function for Tables A2A-B is 

 ∞   
ln(L) = ln φ(μi , hμ) · φ(eit , h,) · [1 − Φ(eit , h,)] dμi , (34) 

i −∞ 0 1 
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where φ(.) and  Φ(.) are the normal density and cumulative normal distribution function, 
respectively, 

h − (x·h)2 

2φ(x ,  h) ≡ √ · e ,
2 · π 

x 

Φ(x ,  h) ≡ φ(E ,  h) dE . 
−∞ 

As indicated above, the observation counts in our tables show that censoring is a major 
factor for males in all education groups. 

Table A2A uses all Social Security earnings figures; Table A2B uses only observations 
through the year before retirement (from full-time work) — to avoid a fractional last year 
or transitional job. For males, we exclude earnings observations less than 1000 times the 
year’s minimum wage per hour. Thus, the samples in Tables A2A-D are slightly smaller 
than the number of linked male earnings records in Table A1. Table A2A is presented 
only for comparison; as stated above, in this paper’s analysis, “retirement” is cessation of 
full-time work. 

Tables A2C-D — see the Appendix — generalize statistical model (32) to 

ln(yit ) =  fE (expit ) +  μi + expit · ηi + Eit . (35) 

The new specification allows heterogeneity in the steepness of individual earning profiles, 
which is potentially important for life-cycle wealth accumulation (see below). As before, 
fE (exp) is quadratic in work experience exp, and  Eit is iid normal. We assume (μi , ηi) is  
bivariate normal — with density φ̄(μ ,  η ,  hμ , hη , Q). The random variables μi, ηi, and  Eit 

have mean 0. Their precisions are hμ, hη, and  h,, respectively. The correlation of μi and 
ηi is Q. Defining ⎧ ⎨ ln(yit) − fE (expit ) − μi − expit · ηi , if group 0, 

∗ e ≡it ⎩ ln(ȳit) − fE (expit ) − μi − expit · ηi , otherwise. 

The likelihood is, integrating from −∞ to ∞ for both μi and ηi, 

ln(L) = 
  

¯
 ∗ ∗ln φ(μi , ηi , hμ , hη , Q) · φ(eit , h,) · [1 − Φ(eit , h,)] dηi dμi . (36) 
i 0 1 

To limit computational difficulties, we proceed as follows. We write φ ¯ as the product 
of a marginal and a conditional density, 

(hy ·[y−m])2hy −
φ̄(x ,  y ,  hx , hy , Q) =  φ(x ,  hx) ·  · e 1−Q2 , (37) 

1 − Q2 

with
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hx 
m ≡ Q · · x .  

hy 

Our calculations then use a 5-point approximation of the inner integral of (36). 
All of the coefficients in Tables A2A-D have large T-statistics. Table A2C imposes Q = 

0; Table A2D does not. The latter, more general formulation seems the most interesting. 
In Table A2D, the correlation, Q, of  μ and η is always negative. However, its absolute 

magnitude is larger for lower education levels. For education group 1, an individual i tends 
to have a high starting value μi and a low intra-lifetime growth rate ηi, or a low starting 
value and a high growth rate. It is as if some jobs require learning at the beginning but 
ultimately pay more, whereas other jobs have more favorable starting pay but less room for 
growth. Assume individual outcomes (μi , ηi) reflect preferences upon starting work. An 
individual’s choice is important to our analysis: those selecting a high-growth career will 
tend to be nearer to their peak earnings as they reach older ages, and they are, according 
to our model, likely to want to retire later (recall Proposition 2). 

For education group 4, on the other hand, the absolute magnitude of the correlation 
Q is lower. Evidently, some college graduates have, regardless of their starting earnings, 
a steeper lifetime earnings trajectory than others. We might think of those with steep 
trajectories as beginning their careers with a technical job but subsequently moving to a 
managerial position. An agent with a low ηi, in contrast, may never leave his technical 
job. Education categories 2-3 may manifest convex combinations of these paradigms. 

Female Earnings Dynamics Model. With many more gaps in lifetime earnings trajecto­
ries, females are more challenging to model. This paper limits its analysis of female earnings 
to the specification above with 2 error components. We assume that shorter earnings his­
tories reflect shorter careers. In determining a female’s work experience expit, therefore, 
we count only years with positive administrative-record earnings. We exclude only years 
with earnings less than 500 times the year’s minimum wage per hour. Comparing our 
measure of experience with self-reported lifetime years in the labor force, the agreement is 
good in most cases. 

In comparison with males (e.g., Table A3A versus A2A), the female constant, β0, 
is lower; female earnings profiles peak at earlier levels of experience (see exp ∗); and, the 
female start-to-peak gain in earnings is substantially lower (c.f., y ∗/y0). 

This paper focuses on male retirement, treating female earnings as exogenous.7 

3B. Step-2: Reduced-Form Analysis of Retirement Ages In our second step, we 
estimate a linearized, reduced-form model of each household’s retirement. Data issues such 
as early retirement due to disability lead to censoring problems. Again, we use a Tobit 
maximum likelihood approach. 

LS [2012] treat the case with joint retirement of both spouses. See also, for example, 
Gustman and Steinmeier [2000]. 
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Likelihood Function. We face 3 types of censoring. First, our retirement data comes 
from HRS (biannual) surveys 1992-2014. Since each HRS couple has at least one member 
51-61 in 1992, a nontrivial number of our males retire before 1992. Sometimes we have a 
respondent-reported male retirement date before 1992. Other times, not. If not, we assume 
a male who is retired (or “out of the labor force”) in the first survey has a retirement date 
censored below 1992. We call this “case-1 censoring.” 

Second, some respondents leave our sample after 1992 but prior to retiring (either 
through attrition from the HRS, divorce or remarriage after widowing, or premature death). 
Moreover, although the HRS does not register a retirement age for every male, for some 
missing values we can determine a last survey wave with full-time employment. We treat 
these cases as having a career length censored above the last observation with full-time 
work. These are households with “case-2 censoring.” 

Third, some respondents exit the labor force due to disability, or retire but categorize 
themselves as disabled prior to it or within one survey wave thereafter. We treat their 
intended retirement age as censored above at the disability age. These are households 
with “case-3 censoring.” 

Respondents with a valid retirement date, and a career not interrupted by disability, 
are uncensored — our “case 0” households. 

Our analysis is as follows. Letting Ri be the (male) retirement age in case-0, and 
Tletting f (α) be the Tobit linearized reduced-form model, with parameter vector α, we  i 

have 

TRi = f (α) +  νi for case 0 . (38) i 

¯In other cases, let Ri be the level of the censored retirement age. Let hν be the precision 
for the regression error ν, i.e., hν = 1/σν . Define 

⎧ 
T⎨ R (α) , for i in group 0, i − fi 

vi ≡ 
¯ T⎩ 
Ri − f (α) , otherwise. i 

Continuing with the normal density and cumulative norm φ(.) and  Φ(.), respectively, as 
above, the Tobit likelihood function is then 

L = φ(vi , hν ) · Φ(vi , hν ) · [1 − Φ(vi , hν )] · [1 − Φ(vi , hν )] . (39) 
0 1 2 3 

Results. Tables A4A-D — see Appendix — present outcomes. Tables A4A-B use the male 
earnings dynamics results from Table A2B. Tables A4C-D use the male earnings equations 
from Table A2D. Tables A4A-D use the female earnings regressions from Table A3B. 

Table A4D seems the most sophisticated and the most interesting. In Table A4D, 
there are 3 highly (statistically) significant regressors: (i) the constants for the different 
education groups; (ii) the dummy for “any years of self-employment” 1992-2014; and, 
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(iii) the mean error component for the steepness of a household’s (male) lifetime earnings 
profile, E[ηi].8 

As all regressors beyond the first in Table A4D are deviations from their mean, the 
Tobit’s constant gives the average (male) retirement age. The average retirement age 
rises with education — though surprisingly modestly. While, for example, all group-4 
households have 4 or more years of education than group 2, their average retirement 
age is only 1-1.5 years higher. Males with the least education have, on average, the 
longest careers. Note that we could anticipate that our structural model also manifests 
this property: a life-cycle model tends to highlight the importance of demographic factors, 
and, if household i has more years of education but roughly the same projected life span 
as household j, the structural model might well predict a later retirement age for i but a 
shorter overall career. 

As we might expect from the literature, having access to self-employment has a positive 
effect on retirement age (though only marginally so for education group 4). Presumably 
self-employment has many amenities (e.g., flexible work hours) that older workers find 
attractive. 

The maximum E[ηi] is 0.03-0.04; hence, households with the highest earnings growth 
rates (with respect to age) retire 1.5-3.0 years above the average.9 The Table-A4B coef­
ficients on E[ηi] are highly statistically significant and the implied role for E[ηi] is fully 
consistent with our structural model. In particular, Proposition 2 shows that a household 
retires when the marginal value of lost earnings equals the lost utility from postponing ac­
cess to greater leisure. A steep lifetime earnings profile makes the former greater, increasing 
the optimal retirement age. 

Comparing results to Table A4B, in the latter the roles of the constants and self-
employment are similar. Without E[ηi], E[μi], the general relative level of male earnings 
seems positively related to later retirement. However, the effect of E[μi] disappears in 
Table A4D. In neither table does female relative earning ability affect male retirement age 
noticeably. Our model has homothetic preferences and, as is the outcome in Table A4D, 

∗we would not expect the level of earnings, as governed by E[μi], to affect R . 
Other regressors in Table A4D have marginal or ambiguous roles. The model suggests 

that a household with more children — leading to a higher marginal utility of household 

Let � be the vector of observations on male i earnings. Let the integrand in (37) be yi 

Υ(μ ,  η ,  �yi), and let 

Ῡ(η ,  �yi) ≡ Υ(μ ,  η ,  �yi) dμ . 

Then we determine E[ηi] ≡ E[η | �yi ] from  

¯ ¯E[ηi] =  η · Υ(η ,  �yi) dη/ Υ(η ,  �yi) dη . 

Recall that the macroeconomic growth rate is the same for all households in our 
earnings dynamics analysis. 
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consumption expenditure — should work longer. While that seems true in the case of 
group 4, its statistical significance is modest. What is more, the opposite outcome holds 
for group 2. Future work incorporating endogenous female labor-force participation might 
yield more easily interpretable results.10 

Similarly, having had a bridge job (i.e., having access to a bridge job) is similarly 
modestly significant for group 4 — where it seems to shorten full-time work. On the other 
hand, it is not significant for other education groups. 

Birth-year dummies are significantly positive, and generally manifest a declining pat­
tern, for group 1. But their role seems negligible for groups 2-4. Perhaps our treatment of 
case-1 censoring is least effective for group 1. 

3C. Step-3: Structural Model In the third empirical step, we estimate Section-2’s 
structural model. 

The structural model is nonlinear and leads to a regression equation 

RRi = fR (θ) +  ER , (40)i i 

where θ is the vector of parameters and ER is the regression error. We first develop a cor­
rection procedure for selection problems identified in step 2. That provides the dependent 
variable  i. 

Corrections for Censoring. Step 2 identified 3 types of censoring in our retirement data. 
Unless we make a correction in (40), our estimates of the structural parameter vector θ 
will suffer from selection biases. 

We use our step-2 reduced-form model to generate the new dependent variable RRi. 
For case 0 from step 2, no correction is necessary. For i with case-1 censoring, we observe 
¯ Ri with 

¯ ¯ Ri ≥ fT (α) +  νi ⇐⇒ νi ≤ Ri − fT (α) .i i 

Then letting ν∗ ≡ hν · ν, we  set11 

R ¯ Ri ≡ fT (α) +  E[νi | νi ≤ Ri − fT (α)]i 

Ri−fT (α)i 

−∞ hν · ν · φ(hν · ν) dν 
= fT (α) +  � R̄i−fT (α)

i hν · φ(hν · ν) dν−∞ 

10 E.g., House et al. [2008]. 
11 Using the notation for the standardized normal and cumulative normal above, note 

that 
dφ = − ν · φ(ν) dν . 
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hν ·[R̄i−fT (α)]i ν∗1 · φ(ν∗) dν∗ 
−∞= fT (α) +  · 

hν ·[R̄i−fT (α)]ihν φ(ν∗) dν∗ 
−∞ 

1 φ(hν · [R̄ 
i − fT (α)]) i= fT (α) − · .i hν 1 − Φ(− hν · [R̄ 

i − fT (α)]) i 

¯In the same vein, for i in step-2 censoring cases 2-3, we observe Ri with 

¯ ¯ Ri ≤ fT (α) +  νi ⇐⇒ νi ≥ Ri − fT (α) .i i 

We set 

R ¯ Ri − fT (α)]Ri ≡ fT (α) +  E[νi | νi ≥i 

1 φ(hν [R̄ 
i − fT 

i (α)]) 
.

[R̄ 
i − fT (α)]) i 

· 
1 − Φ(hν 

= fT 
i (α) +  ·
 

hν ·
 
Summarizing, 

Ri ≡R
⎧ ⎪⎪⎪⎪⎨
 

Ri , for i in case 0, 

1 φ(−hν ·[R̄i−fi
T (α)]) 

fT (α) − · , for i in case 1, i hν 1−Φ(−hν ·[R̄i−fT (α)]) (41) 
i 

1 φ(hν ·[R̄i−fi
T (α)]) 

fT (α) +  · , for i in cases 2-3. i hν 1−Φ(hν ·[R̄i−fT (α)]) i 

⎪⎪⎪⎪⎩
 

Econometric Specification. The structural model contains 3 types of terms. 
Terms of Type 1 The first type is based upon Proposition 2 and uses CEX consumption 
data. Let average per capita consumption expenditure for age s and time t be cst. As  in  
LS [2012], we normalize each year’s data to match NIPA aggregates. From (12)-(13), a 
household’s age-s optimal consumption expenditure is X∗ with s 

ln(X ∗) =s 

⎧⎨ 

⎩
 

∗ln(Ns) +  ln(x ) +  r−ρ · s ,  s < R,0 1−γ 

γ ∗ln(Ns) +  · ln(ω) +  ln(x ) +  r−ρ · s ,  s  ≥ R.
1−γ 0 1−γ 

From (3), 

ln(Ns) =  ln(1  +  Ns − 1) ≈ Ns − 1 =  χS (s) · ξS + χK (s) · ξK . 

Similarly, 

ln(X ∗) ≈ X ∗ − 1 .s s 

Let χS (s) be 1 if the household has a spouse present at age s and 0 otherwise; let χK (s) be  
the number of kids present; and, let χR(s) be 1 if the household is retired and 0 otherwise. 
Let 
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ΔχS (s) ≡ χS (s + 1)  − χS (s) , 

etc. Then we have an approximation
 

∗ΔXs = β1 + β2 · ΔχS (s) +  β3 · ΔχK (s) +  β4 · ΔχR(s) , (42) 

r − ρ γ 
βT ≡ , ξS , ξK , · ln(ω) .

1 − γ 1 − γ 

Returning to the CEX data, index observation cst as ci, where  Δci = cs+1,t+1 − cst, 
etc. Then from the logic of (42), 

T yi ≡ Δci = xi · β + Δνi , i ∈ CEX ,  (43) 

T x ≡ 1 , ΔχS (i) , ΔχK (i) , ΔχR(i) ,i 

where νi is iid measurement error for the level of ci. 
Stacking rows (43) into a vector, we have a band symmetric variance matrix that we 

can invert. Taking a Cholesky factorization, we can transform (43) to a homoscedastic 
form 

T ȳi = x̄ · β + Ei , i ∈ CEX .  (44) i 

Terms of Type 2-3 Let HRSR = HRSA = HRS be the set of HRS households with both 
retirement and networth at year 1992 data. Given β and γ = γR, our model and the data 
can be solved for an optimal retirement age Ri" for each household: 

˜ R ' Ri" = fi
R 
" (β ,  γR) +  Ei" , i  ∈ HRSR . (45) 

Similarly, if Ai"" is a household’s networth in 1992 and we set γ = γA, then  

A '' Ai"" = fi
A 
"" (β ,  γA) +  Ei"" , i  ∈ HRSA . (46) 

Notice that our corrections for selection tend to make ER heteroscedastic and that ER and 
AE may well be correlated. 

Estimation. We follow Gallant [1987]. 

Stage 1 We obtain stage-1 estimates of 

θ ≡ (βT , γR , γA) 

as follows. Define ⎧ 
T⎨ ȳi − x̄ · β ,  for i ∈ CEX, 

˜
i 

qi ≡ Ri − fi
R(β , γR) , for i ∈ HRSR ,⎩ 

Ai − fi
A(β , γA) , for i ∈ HRSA , 
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⎧ 
T⎨ (x̄ , 0 , 0)T , for i ∈ CEX,i 

Zi ≡ (0̃ , 1 , 0)T , for i ∈ HRSR ,⎩ (0̃ , 0 , 1)T , for i ∈ HRSA . 

Note that Zi ∈ R6 all i. For any symmetric, positive definite, 6 × 6 matrix  V , define 

1 T S θ ,  V  ≡ · qi ⊗ Zi · V −1 · qi ⊗ Zi . (47)
2 

i i 

Setting V to the identity matrix, the stage-1 estimate of θ is 

θ̂ ≡ (ˆ γR , ˆ S(θ ,  I) .β ,  ̂ γA) =  arg  min  
θ 

See below. 
The covariance matrix for θ̂ is as follows. Let V̂ = V be zeros except for 4 × 4 and  

¯  2 × 2 matrices, V and V on its principal diagonal. The 4 × 4 matrix  is  

V ̄ ≡ [σCEX ]2 T· x̄i · x̄ ,i 
i 

where σCE is the sampling variance from OLS regression (44). The 2 × 2 matrix  is  

σRR σRAV ̄̄ ≡ #HRS · ,
σRA σAA 

the elements being the sampling covariances from the residuals qi" and qi"" , respectively, 
and #HRS, the  HRS sample size. We have ⎛ ⎞¯ ˜V 0 

ˆ ⎝ ⎠V = . 
˜ ¯̄0 V 

As stated, our corrections for selection can render ER heteroscedastic. Given the simple 
 nature of our instruments Zi, however, V gives us a heteroscedastic invariant covariance 

matrix estimator below (see White [1980], Gallant [1987, p.222]). 
Letting the 6 × 6 matrix  Q have column j 

∂qi ⊗ Zi ,
∂θji 

the covariance matrix for θ̂ is 

C = QT · [V̂ ]−1 · Q]−1 . (48) 

We can test γ̂R = γ̂A . This hypothesis is substantively important — see below. 
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γR ˆStage 2 We next impose γ = = γA. We  continue  with  V = V , as  above,  which  
remains a consistent estimate. 

In Stage 2, we solve 

max S(θ ,  V̂ ) , (49) 
θ 

subject to: θ5 = θ6 . 

We use Newton’s method, as in Gallant [1989, p.434]. 
Given the constraint in (49), we are now estimating 5 parameters. In other words, we 

are only estimating the constrained parameter vector 

θc ≡ (βT , γ) ∈ R5 . 

Call our estimate θ�c. 
To derive the covariance matrix of the new parameter vector, we need to modify (48). 

To do so, we substitute a matrix Qc for Q. The  matrix  Qc is 6 × 5. It has the same first 4 
columns as Q. The fifth column of Qc, however, is the sum of the fifth and sixth columns 
of Q, that is to say it is 

∂qi " ∂qi "" ⊗ Zi" + ⊗ Zi"" . 
∂θ5 ∂θ6 

i "∈HRSR i ""∈HRSA 

As stated, we use the same V̂ as before. Call the new covariance matrix, say, Cc . 
Data. Our CEX data is exactly the same as LS [2012] (see also Laitner and Silverman 
[2005]). The number of CEX observations is 765. The HRSR sample has been described 
above. It has 1634 observations. Table 1 presents statistics. The table’s first 2 rows refer 
to R̃, as in (40). Although we correct for 3 types of censoring, the table’s Addendum shows 
that the fraction of the sample that is censored is relatively small — less than 20% of the 
total (in contrast to LS [2012] where over half the observations are censored). As noted 
above, the sample is limited to households that are couples in 1992. The retirement age 
refers to men. We exclude cases with retirement prior to age 51. We assume men die at 
(the beginning of) age 75; hence, there are no retirement ages beyond that. 

The HRSA sample covers the same households as HRSR . None of the networth 
observations are censored.12 All of the figures are current values in 1992 (in terms of 1984 
dollars). We use Rand HRS “financial and housing wealth,” including secondary residence, 
1992 wave.13 This includes primary and secondary residence; other real estate; vehicles; 
own business; IRAs; corporate stocks and bonds; checking, saving, and money market 
accounts; CDs and government bonds; other savings; less debts and mortgages. We add 
employer provided pensions, DB and DC, both reported and imputed, in present value 

12 Note: for regression (47), we solve the model for a household’s optimal retirement age 
and then compute the corresponding Ai"" . Only the latter is used in analysis of (47). 

13 See variable H1ATOTB in Rand HRS Data Documentation: Version P, 2016, at 
http://www.rand.org/labor/aging/dataprod/hrs-data.html. 
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1992, with 1984 dollars. DB pension equity is prorated to 1992, based on work to date 
(in 1992).14 As employer provided pensions are pre-tax dollars in practice, we subtract 
income taxes for comparability with the model. The networth data excludes capitalized 
Social Security and Medicare benefits, as our model incorporates the latter two separately. 
Table 1 presents statistics on the sample. Obtaining detailed DB, as well as DC, pension 
data is an important innovation of the HRS — and we can see the significance of pensions 
in the magnitude of Ai"" . 

The analysis also considers a winsorized sample, which trims the top and bottom 1% of 
the wealth observations. Winsorization is often used as a protection against outliers, from, 
say, errors in the data. In our case, the top wealth observations may also reflect estate-
building, which is outside the scope of our model. (Indeed, the excluded observations 
include wealth holdings roughly in the range $2.5-5 mil., all of which exceed what the 
model generates.) The low-wealth exclusions all have negative values, which may reflect 
bankruptcy options in practice, which the model lacks. 

Outcomes. Table 2 presents results. Table 2A uses a hazard to disability of 1%/yr, 
starting at (the end of) age 50. Table 2B uses a 2%/yr hazard starting at age 60 (cf., LS 
[2012, Table 3]). Table 2C sets the disability hazards to 0; it is included for the sake of 
comparison. 

Stage 1 and stage 2 can be interpreted as follows. In stage 1, the model is exactly 
identified, and we can characterize the solution to (47) fully. In particular, the OLS 
estimator in (44), say, β� ∈ R4, solves  

4 qi ⊗ Zi = 0̃ ∈ R . 
i∈CEX 

Given β�, choose  �γR to make 

1 qi" = 0  ∈ R . 
i "∈HRSR 

And, given β�, choose  γ�A to make 

1 qi"" = 0  ∈ R . 
i ""∈HRSA 

Then the criterion of (47) is 0, its minimum. As these steps show, (� γR) provides  an  β ,  �
estimator for the system (44)-(45), whereas (� γA) does the same for the system of (44) β ,  �
and (46). In stage 2, we estimate (44)-(46) jointly by constraining γR = γA = γ. In stage 

See Health and Retirement Study, Imputations for Pension Wealth, 2006, Data De­
scription and Usage, at 
http://hrsonline.isr.umich.edu/modules/meta/xyear/ipw/desc/imppenwdd.pdf? ga= 
2.200940582.943205656.1499911168-2032089123.1438294228. And, Pension Wealth 1992 & 
1998, Documentation Database Codebook Generator (v1.1) 12/12/2006 at 
http://hrs.isr.umich.edu/documentation/codebooks. 
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Table 1. Retirement Age (R̃) and Networth (1000s 1984 dollars) 1992 (A) 
for HRS Couples 1992-2014 

Variable Mean Coef. 
Var. 

Median Inter­
quartile 
Spread 

Min­
imum 

Max­
imum 

R̃ a/ 62.53 0.08 62.42 5.42 51.00 75.00 

R̃ winsorized 62.52 0.08 62.42 5.42 51.00 75.00 

A 277.49 1.56 160.93 248.29 -74.14 4929.21 

A excluding 

employer pension b/ 

215.03 1.80 108.48 172.03 -75.45 4743.95 

A winsorized 248.49 1.13 161.12 244.22 -0.26 2159.31 

A winsorized 

excl. empl. pension b/ 

189.36 1.33 108.59 167.47 -39.80 2159.31 

Addendum 

R̃ 
(see Row 1) 

non-censored 
obs. = 1342 

disabled 
obs. = 40 

other censored 
obs. c/ = 252 

R̃ winsorized 
(see Row 2) 

non-censored 
obs. = 1317 

disabled 
obs. = 39 

other censored 
obs. c/ = 245 

Source: see text. Original HRS cohort. Unweighted. Sample size=1634. Winsorized sample 
size (see text)=1601. 

(a) Retirement age corrected for selection — see (40). 
(b) “Employer-related pension” includes both DB and DC — see text. 
(c) Includes those not retiring within sample. 
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2, the system is over-identified, and the Wald test in Tables 2A-C tests the validity of the 
over-identifying restriction. 

The first-stage estimates of γR are negative and close to 0. They are qualitatively 
similar to LS [2012], although slightly larger in absolute size. In all 6 trials, they are 
statistically significantly below 0 at the 10% level with a two-tailed test. The stage-1 
estimates of γA are qualitatively similar to the estimates of γR, though they are closer to 
0 in all cases. In no case does a Wald test of the hypothesis 

H0 : γR = γA (50) 

yield a statistically significant rejection.15 That is encouraging: while the life-cycle model 
is often estimated from one or the other of labor supply or saving behavior, it is an 
important tool for policy analysis of both variables. As such, it should be able to explain 
them simultaneously. In Table 2, our model demonstrates an ability to do so. 

Looking at the stage-2 outcomes, the constrained estimate γ = γR = γA is significantly 
different from 0 at the 1% significance level in all 6 trials. In other words, the analysis 
strongly rejects separable preferences for consumption and leisure. The constrained esti­
mate resembles the corresponding Stage-1 estimate of γR much more closely than γA in 
every case. Winsorization makes surprisingly little difference. 

Finally, our analysis checks for local maxima to the optimal retirement problem. We 
do indeed find local maxima in 5-10% of the cases. For example, in the first column of 
Table 2A, multiple local maxima arise in 112 of the 1634 cases. 

Discussion. One innovation of our formulation is that it emphasizes the importance to 
households of both consumption expenditure and leisure. Early empirical findings seemed 
to suggest that households often incurred a large decrease in consumption expenditure after 
retirement — which was thought to be evidence of non-optimal behavior (e.g., Berheim et 
al. [2001] and others). Proposition 1 shows that with our specification of preferences — 
in which consumption expenditure and leisure have non-separable roles — a discontinuous 
(permanent) change in consumption expenditure at retirement is fully consistent with 
optimality. In particular, households may plan for higher consumption before retirement, 
in order to compensate themselves for scarce leisure prior to retirement relative to the 
abundance thereafter. The estimates of β4 in Table 2A-C suggests a drop in consumption 
expenditure of about 8% after retirement on average. The fact that a 99% confidence 
interval for γ�c does not include 0 reinforces the importance of the role of leisure. 

Our estimate of γ, in turn, specifies the intertemporal elasticity of substitution, 
IES  = 1/(1 − γ). The IES is important for analysis of tax changes, risk aversion, liquidity 
constraints, etc. A life-cycle model with fully insured uncertainty often cannot estimate 
the IES if retirement is exogenous. That would be true for our formulation: β ∈ R4 would 
fully determine a household’s wealth accumulation, and (46) could not identify γ. With  
endogenous retirement, on the other hand, identification is feasible. Suppose our CEX 
data shows, for instance, β = −0.08 and, as is common in the literature, γ <  0. Then 

Because our corrections for selection in Step 2 leave the errors in the HRS equations 
heteroscedastic, this subsection presents only White standard errors. Likelihood ratio tests 
are generally unavailable in these circumstances. 
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Table 2A. Structural Model Regression Outcomes with 
Stochastic Process for Disability having λ = 0.01 and ¯ S = 50: 

Estimated Parameter (Std. Error/T-Stat.) 

Variable 
Original Sample 

Stage 1 Stage 2 

Winsorized Sample 

Stage 1 Stage 2 

β1 = r−ρ 
1−γ 0.0264∗∗∗ 

(0.0008/34.5727) 
0.0272∗∗∗ 

(0.0006/41.9929) 
0.0264∗∗∗ 

(0.0008/34.5727) 
0.0272∗∗∗ 

(0.0006/45.1827) 

β2 = ξS 0.3351∗∗∗ 

(0.0523/6.4108) 
0.3351∗∗∗ 

(0.0491/6.8244) 
0.3351∗∗∗ 

(0.0523/6.4108) 
0.3353∗∗∗ 

(0.0482/6.9583) 

β3 = ξK 0.3372∗∗∗ 

(0.0181/18.6690) 
0.3373∗∗∗ 

(0.0165/20.4231) 
0.3372∗∗∗ 

(0.0181/18.6690) 
0.3377∗∗∗ 

(0.0158/21.3278) 

β4 = γ 
1−γ · ln(ω) -0.0831∗∗ 

(0.0370/-2.2482) 
-0.0830∗∗∗ 

(0.0218/-3.8153) 
-0.0831∗∗ 

(0.0370/-2.2482) 
-0.0817∗∗∗ 

(0.0086/-9.4917) 

γ NA -0.2171∗∗∗ 

(0.0245/-8.8703) 
NA -0.2174∗∗∗ 

(0.0038/-5.7157) 

γR -0.2179∗ 

(0.1150/-1.8940) 
NA -0.2187∗ 

(0.1156/-1.8925) 
NA 

γA -0.0906∗∗ 

(0.0449/-2.0179) 
NA -0.1382∗∗ 

(0.0678/-2.0375) 
NA 

# Obs  4033 4033 3967 3967 

Criterion S(θ ,  V̂ ) 0.0000 11.6044 0.0000 4.1428 

Addendum: Statistic for Wald Test of Hypothesis (50) 

γR − γA -0.1273 
(0.0816/-1.5595) 

NA -0.0805 
(0.0694/-1.1604) 

NA 

Source: see text. Significant at ∗ 10%, ∗∗ 5%, ∗∗∗ 1% level (based on asymptotic distribution). 
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Table 2B. Structural Model Regression Outcomes with 
Stochastic Process for Disability having λ = 0.02 and ¯ S = 60: 

Estimated Parameter (Std. Error/T-Stat.) 

Variable 
Original Sample 

Stage 1 Stage 2 

Winsorized Sample 

Stage 1 Stage 2 

β1 = r−ρ 
1−γ 0.0264∗∗∗ 

(0.0008/34.5727) 
0.0272∗∗∗ 

(0.0006/42.0767) 
0.0264∗∗∗ 

(0.0008/34.5727) 
0.0271∗∗∗ 

(0.0006/44.3308) 

β2 = ξS 0.3351∗∗∗ 

(0.0523/6.4108) 
0.3355∗∗∗ 

(0.0496/6.7626) 
0.3351∗∗∗ 

(0.0523/6.4108) 
0.3354∗∗∗ 

(0.0482/6.9593) 

β3 = ξK 0.3372∗∗∗ 

(0.0181/18.6690) 
0.3381∗∗∗ 

(0.0167/20.2350) 
0.3372∗∗∗ 

(0.0181/18.6690) 
0.3378∗∗∗ 

(0.0159/21.2791) 

β4 = γ 
1−γ · ln(ω) -0.0831∗∗ 

(0.0370/-2.2482) 
-0.0817∗∗∗ 

(0.0236/-3.4568) 
-0.0831∗∗ 

(0.0370/-2.2482) 
-0.0818∗∗∗ 

(0.0099/-8.2487) 

γ NA -0.2039∗∗∗ 

(0.0384/-5.3077) 
NA -0.2076∗∗∗ 

(0.0577/-3.5954) 

γR -0.2081∗ 

(0.1102/-1.8883) 
NA -0.2086∗ 

(0.1106/-1.8871) 
NA 

γA -0.0876∗ 

(0.0523/-1.6745) 
NA -0.1345∗ 

(0.0746/-1.8032) 
NA 

# Obs  4033 4033 3967 3967 

Criterion S(θ ,  V̂ ) 0.0000 10.4231 0.0000 3.3691 

Addendum: Statistic for Wald Test of Hypothesis (50) 

γR − γA -0.1205 
(0.0873/-1.3808) 

NA -0.0741 
(0.0820/-0.9043) 

NA 

Source: see text. Significant at ∗ 10%, ∗∗ 5%, ∗∗∗ 1% level (based on asymptotic distribution). 
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Table 2C. Structural Model Regression Outcomes without 
Stochastic Process for Disability: a/ 

Estimated Parameter (Std. Error/T-Stat.) 

Variable 
Original Sample 

Stage 1 Stage 2 

Winsorized Sample 

Stage 1 Stage 2 

β1 = r−ρ 
1−γ 0.0264∗∗∗ 

(0.0008/34.5727) 
0.0271∗∗∗ 

(0.0006/42.0999) 
0.0264∗∗∗ 

(0.0008/34.5727) 
0.0272∗∗∗ 

(0.0007/44.5864) 

β2 = ξS 0.3351∗∗∗ 

(0.0523/6.4108) 
0.3351∗∗∗ 

(0.0487/6.8783) 
0.3351∗∗∗ 

(0.0523/6.4108) 
0.3353∗∗∗ 

(0.0480/6.9834) 

β3 = ξK 0.3372∗∗∗ 

(0.0181/18.6690) 
0.3373∗∗∗ 

(0.0164/20.6284) 
0.3372∗∗∗ 

(0.0181/18.6690) 
0.3376∗∗∗ 

(0.0158/21.3926) 

β4 = γ 
1−γ · ln(ω) -0.0831∗∗ 

(0.0370/-2.2482) 
-0.0829∗∗∗ 

(0.0198/-4.1829) 
-0.0831∗∗ 

(0.0370/-2.2482) 
-0.0817∗∗∗ 

(0.0075/-10.9670) 

γ NA -0.1983∗∗∗ 

(0.0239/-8.3039) 
NA -0.1991∗∗∗ 

(0.0370/-5.3877) 

γR -0.1995∗ 

(0.1060/-1.8813) 
NA -0.2001∗ 

(0.1065/-1.8801) 
NA 

γA -0.0829∗ 

(0.0427/-1.9396) 
NA -0.1273∗∗ 

(0.0640/-1.9886) 
NA 

# Obs  4033 4033 3967 3967 

Criterion S(θ ,  V̂ ) 0.0000 11.2229 0.0000 3.7563 

Addendum: Statistic for Wald Test of Hypothesis (50) 

γR − γA -0.1166 
(0.0755/-1.5441) 

NA -0.0728 
(0.0640/-1.1371) 

NA 

Source: see text. Significant at ∗ 10%, ∗∗ 5%, ∗∗∗ 1% level (based on asymptotic distribution). 
(a) SSDI tax remains in place but hazard into disability is 0. 
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dω−0.08 ⇔ ω = e −0.08·(1−γ)/γ ⇔1−γ[ω] 
γ 

= e > 0 . 
dγ 

Thus, γ farther below 0 means ω is lower. Since ω registers the value of the post-retirement 
increase in leisure, a lower ω makes the optimal age of retirement higher. Hence, a unique 
γ can match the HRS retirement data in (45). (In turn, we can also identify γ from (46): 
a later retirement age leads to less wealth accumulation at given early age.) Alternative 
strategies for estimating γ often involve modeling uninsured risks and determining γ from 
the corresponding precautionary saving. Although of great interest, such approaches in­
troduce many new complexities — and analyses often, for simplicity, neglect retirement 
behavior. 

In the end, we are able to estimate life-cycle parameters using micro data on both 
retirement and wealth accumulation. As we do so, we are able to increase the precision of 
our estimates of γ. 

4. Policy Simulations This paper’s main task is incorporating up-to-date data into the 
estimation of a life-cycle model’s parameters, using both retirement and networth variables. 
Nonetheless, we briefly present policy simulations to illustrate the model’s policy relevance 
and to note how outcomes differ from previous work. Our model is limited to couples 
and the analysis above studies male retirements, taking female labor force participation as 
given; thus, our simulations concentrate on male retirement. 

As in LS [2012], we examine age-specific, revenue-neutral payroll tax changes. We 
are interested in potential efficiency gains from raising the OASI payroll tax (on males) 
with a surtax prior to age S0, and then removing the OASI tax completely at ages S0 and 
beyond. The idea is to present households with a lower payroll tax on earnings as they 
enter the stage in life when they might retire, thereby encouraging longer careers. On the 
other hand, we use a surtax in earlier years to preserve revenue neutrality for the Social 
Security system. If existing income and other taxes lead households to retire earlier than 
efficiency would dictate, encouraging longer careers can promote aggregate well-being. By 
targeting tax reductions to ages when they can affect the margin of household decision, 
we can hope to enhance overall economic efficiency. 

Table 3 presents results using the parameter estimates from Table 2A, original sample. 
We consider removing the OASI payroll tax at each individual age from 54 to 68. 

At higher ages, the average gains in labor force participation are small — most house­
holds retire long before S0, so the tax reduction has no effect on their behavior. In fact, 
the payroll surtax does affect the margin of choice of the latter group, causing many to 
retire earlier than otherwise, rather than later. Since few households benefit from the tax 
reduction in this case, the surtax can have a very low rate. 

At lower vesting ages, the gains in labor force participation are almost an order of 
magnitude larger. At S0 = 54, for example, the overall average increase in male partici­
pation is 1.27 years. In that simulation, 1579 households out of the 1634 in our sample 
choose to work longer. The surtax is therefore high, 1.69%/yr., and the work disincentive 
correspondingly high for early retirees — though the relevant group numbers only 29. 

LS [2012] show that the major efficiency gains come from higher income tax revenues 
generated by enhanced participation rates. In fact, the gain per extra year of participation 
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Table 3. Simulated Average Male Labor Force Participation Changes for 
Payroll Tax Increases Prior to Age S0 and OASI-tax Elimination 

Thereafter (with Overall Budget Neutrality) 

Age S0 for 
OASI Tax 

Elimination 

Ave. Increase 
Male Retirement 
Age — All Cases 

Payroll 
Surtax 

Ages≤ S0 

Retirement Age Increases 

# Obs.  a/ Ave. Increase 

Retirement Age Decreases 

# Obs.a/ Ave. Increase 
54 1.2703 0.0169 1579 1.3168 29 -0.1219 
55 1.2287 0.0145 1541 1.3100 67 -0.1639 
56 1.1814 0.0123 1490 1.3055 118 -0.1257 
57 1.1221 0.0104 1427 1.2971 181 -0.0965 
58 1.0583 0.0086 1360 1.2849 248 -0.0730 
59 0.9652 0.0071 1263 1.2649 345 -0.0591 
60 0.8757 0.0058 1160 1.2551 448 -0.0561 
61 0.7797 0.0047 1047 1.2384 561 -0.0402 
62 0.6922 0.0038 946 1.2188 662 -0.0331 
63 0.5746 0.0030 827 1.1622 781 -0.0284 
64 0.4767 0.0023 724 1.1018 884 -0.0213 
65 0.3810 0.0018 639 1.0043 969 -0.0198 
66 0.2992 0.0014 528 0.9598 1080 -0.0165 
67 0.2363 0.0010 458 0.8761 1150 -0.0131 
68 0.1868 0.0007 377 0.8389 1231 -0.0090 

Source: See text. 
(a) Total observations=1634. Total - # ret. age increases - # ret. age decreases=# zeros. 
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is about $10,000 2005-dollars. (Other gains, as measured through equivalent variations, 
are only about 25% as large.) Extra income taxes flow to the IRS, in practice, but they 
could, in principle, be shared with the Social Security trust fund.16 

A surprise is that while labor force participation gains in Table 3 are similar to those in 
LS [2012, tab. 5] for high vesting ages, they are about 25% lower at S0 = 54. One reason for 
the latter may be that this paper’s simulations affect only males, whereas LS [2012] assume 
that males and females retire together. Another potentially important factor stems from 
differences in methodology. Namely, LS [2012] use HRS data only through 2002. About 
half of their sample had not reached retirement and was excluded from the simulation 
analysis. Those dropped would have tended to be households that retired at older ages. 
The last 4 columns of our Table 3 show, however, that late retirees tend to increase their 
participation less from a payroll tax reduction than those who retire earlier. In the present 
paper’s analysis, virtually all careers are complete in sample — and our new simulation 
methodology preserves all cases, regardless. Thus, at low values of S0, we  have  a  mixture  
of young retirees, whose retirement ages rise a great deal, and households that retire at 
older ages, who postpone retirement more modestly in response to the reform. In sum, 
the higher participation gains in the earlier study may have been biased upward by the 
limited sample then available. 

5. Conclusion This paper re-estimates the life-cycle model of LS [2012] using up-to-date 
data and improvements in methodology. The new parameter estimates are qualitatively 
similar to the old, though not exactly the same. We have more observations with which to 
work, take more extensive precautions to avoid selection problems, and, most importantly, 
simultaneously estimate retirement and wealth accumulation equations — taking better 
advantage of the richness of HRS data resources. 

Section 4 demonstrates the new model’s usefulness in studying a potential policy 
reform that has attracted attention: we ask, if we make revenue-neutral, age-dependent 
changes in the OASI payroll tax, are gains in economic efficiency possible? The answer is 
“yes.” By lowering the payroll tax at ages near retirement and raising it earlier, we can 
encourage longer careers — enhancing efficiency. Our improved parameter estimates can 
enhance confidence in the overall results. 

One precendent was that the 1983 Greenspan Commission report on Social Secu­
rity Reform recommended that the IRS treat up to 50% of OASDI benefits as tax­
able income — and that the proceeds be credited to the OASDI Trust funds. That 
was accomplished — see the Summary of the Social Security Amendments of 1983 
(https://www.ssa.gov/history/1983amend.html). 
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Appendix
 



Table A1. HRS Sample 

Row Restriction Sample 

1 Original HRS Households 13,593 

2 Couples 5,057 

3 Currently Married & First Marriage Both Spouses 3,140 

4 Valid Covariates Both Spouses a/ 3,057 

5 Valid Child Information b/ 2,679 

6 Row 5 and Linked SSA Male Earnings Record 2,499 

7 Row 5 and Valid Male Earnings Record from Table A2B-D c/ 2,448 

8 Row 5 and Linked SSA Female Earnings Record 2,553 

9 Row 5 and Valid Female Earnings Record from Table A3B d/ 2,313 

10 Row 5 and Row 7 and Row 9 1,846 

Addendum 

11 Row 10 and All Variables for Structural Estimation e/ 1,634 

Source: see text. 
(a) “Valid” records must have birth year each spouse, appear in at least one survey 

wave, each spouse years of education in [1,24], and spousal age difference ≤ 10. 
(b) Valid records must have ≤ 10 children and ages for each. 
(c) Valid male earnings figures must exceed 1000 times year’s minimum wage; valid male 

earning records must have 1 or more earnings figures prior to year before 
retirement from full-time work. 

(d) Valid female earnings figures must exceed 500 times year’s minimum wage; valid female 
earning records must have 1 or more earnings figures prior to year before 
retirement from full-time work — or survey must verify female never worked. 

(e) Exclude males with retirement ages ≤ 50. 



Table A2A. Male Earnings Dynamics Model Estimates: 
Two Error (μ ,  E) Components; a/ All Ages (including partial retirement) 

Education Group 1 Education Group 2 Education Group 3 Education Group 4 

Parameter Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

β0 9.3505 0.0219 
[426.6381] 9.6041 0.0186 

[516.3639] 9.7200 0.0320 
[303.3537] 9.9379 0.0321 

[309.8869] 

β1 0.0624 0.0010 
[60.7631] 0.0748 0.0009 

[80.9095] 0.0811 0.0016 
[49.3677] 0.0932 0.0016 

[57.9024] 

β2 -0.1303 0.0019 
[−67.5778] -0.1692 0.0019 

[−89.7148] -0.1916 0.0036 
[−53.8510] -0.2189 0.0035 

[−62.7279] 

hμ 2.1299 0.0619 
[34.4175] 2.2123 0.0588 

[37.6332] 1.8723 0.0740 
[25.3102] 1.4929 0.0482 

[30.9664] 

hE 2.3479 0.0134 
[175.1504] 2.0640 0.0111 

[185.5290] 1.8466 0.0164 
[112.8160] 1.6022 0.0131 

[122.1963] 

Likelihood (L) and  sample  size  

− ln(L) 0.134402E+05 0.197580E+05 0.875512E+04 0.129242E+05 

individuals b/ 674 831 378 592 

censored obs 5297 10771 5514 10611 

uncensored obs 16376 18639 7007 8476 

Experience level (x ∗) for peak earnings and ratio of peak to starting earnings (y ∗/y0) 

x ∗ 23.9188 22.0933 21.1499 21.2913 

y ∗/y0 2.1079 2.2841 2.3564 2.6972 

See text. hμ is the precision 1/σμ, etc.  
(a) μi is a random individual effect, Eit is a random regression error, and the two are
 

assumed independent.
 
(b) Males with link to SSA earnings and 1 or more usable observations — see Table A1. 



Table A2B. Male Earnings Dynamics Model Estimates: 
Two Error (μ ,  E) Components; a/ Ages Until Year Before 

Retirement from Full-time Work 

Education Group 1 Education Group 2 Education Group 3 Education Group 4 

Parameter Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

β0 9.3453 0.0221 
[422.8266] 9.6056 0.0188 

[512.0259] 9.7175 0.0321 
[303.1044] 9.9325 0.0321 

[309.3079] 

β1 0.0627 0.0010 
[60.4179] 0.0748 0.0009 

[80.2951] 0.0818 0.0017 
[49.5735] 0.0931 0.0016 

[57.9064] 

β2 -0.1309 0.0019 
[−67.1948] -0.1692 0.0019 

[−88.9938] -0.1935 0.0036 
[−53.9985] -0.2178 0.0035 

[−62.4378] 

hμ 2.1357 0.0627 
[34.0623] 2.2038 0.0587 

[37.5237] 1.8754 0.0742 
[25.2666] 1.4968 0.0485 

[30.8455] 

hE 2.3439 0.0135 
[173.6513] 2.0600 0.0112 

[184.5367] 1.8462 0.0164 
[112.5851] 1.6124 0.0133 

[121.6694] 

Likelihood (L) and  sample  size  

− ln(L) 0.132128E+05 0.196170E+05 0.872588E+04 0.127480E+05 

individuals b/ 661 823 377 587 

censored obs 5152 10726 5513 10513 

uncensored obs 16093 18446 6978 8400 

Experience level (x ∗) for peak earnings and ratio of peak to starting earnings (y ∗/y0) 

x ∗ 23.9297 22.1015 21.1438 21.3777 

y ∗/y0 2.1164 2.2852 2.3748 2.7058 

See text. hμ is the precision 1/σμ, etc.  
(a) μi is a random individual effect, Eit is a random regression error, and the two are
 

assumed independent.
 
(b) Males with link to SSA earnings and 1 or more usable observations — see Table A1. 



Table A2C. Male Earnings Dynamics Model Estimates: 
Three Error (μ ,  E ,  η) Components; a/ (μ ,  E ,  η) Independent; 
Ages Until Year Before Retirement from Full-time Work 

Education Group 1 Education Group 2 Education Group 3 Education Group 4 

Parameter Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

β0 9.2893 0.0242 
[383.2890] 9.5499 0.0199 

[480.7305] 9.6602 0.0317 
[305.1217] 9.7703 0.0299 

[326.2373] 

β1 0.0665 0.0012 
[57.1041] 0.0788 0.0011 

[70.0171] 0.0831 0.0019 
[44.1956] 0.1042 0.0018 

[57.6041] 

β2 -0.1409 0.0020 
[−69.0295] -0.1781 0.0019 

[−91.3821] -0.1935 0.0036 
[−53.9985] -0.2367 0.0036 

[−66.0101] 

hμ 1.9171 0.0633 
[30.2763] 2.0225 0.0590 

[34.2770] 1.8666 0.0829 
[22.5093] 1.6196 0.0606 

[26.7080] 

hE 2.6326 0.0154 
[170.9152] 2.3260 0.0128 

[182.2719] 2.1463 0.0193 
[111.2552] 1.8782 0.0156 

[120.7039] 

hη 48.2327 1.2044 
[40.0471] 37.7855 1.0653 

[35.4705] 32.6316 1.0332 
[31.5826] 27.4064 0.8638 

[31.7289] 

Likelihood (L) and  sample  size  

− ln(L) 0.119206E+05 0.179135E+05 0.788414E+04 0.115962E+05 

individuals b/ 661 823 377 587 

censored obs 5152 10726 5513 10513 

uncensored obs 16093 18446 6978 8400 

Experience level (x ∗) for peak earnings and ratio of peak to starting earnings (y ∗/y0) 

x ∗ 23.6175 22.1236 20.5625 21.9990 

y ∗/y0 2.1943 2.3914 2.3504 3.1444 

See text. hμ is the precision 1/σμ, etc.  
(a) μi is a random individual effect; Eit is a random regression error; and, ηi is a second random 

individual effect, which enters the model multiplying years of work experience. 
(b) Males with link to SSA earnings and 1 or more usable observations — see Table A1. 



Table A2D. Male Earnings Dynamics Model Estimates: 
Three Error (μ ,  E ,  η) Components; a/ E Independent; (μ ,  η) Bivariate Normal 

with Correlation Coefficient ρ; Ages Until Year Before Retirement 
from Full-time Work 

Education Group 1 Education Group 2 Education Group 3 Education Group 4 

Parameter Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

β0 9.2718 0.0264 
[350.9990] 9.5482 0.0211 

[452.2729] 9.6604 0.0327 
[295.8525] 9.7674 0.0309 

[315.7959] 

β1 0.0674 0.0012 
[56.0699] 0.0798 0.0011 

[73.6682] 0.0837 0.0017 
[48.1854] 0.1036 0.0018 

[58.5346] 

β2 -0.1432 0.0020 
[−70.1596] -0.1777 0.0023 

[−78.0434] -0.2019 0.0036 
[−56.6977] -0.2388 0.0035 

[−67.8860] 

hμ 1.7259 0.0609 
[28.3411] 1.9032 0.0569 

[33.4654] 1.7985 0.0800 
[22.4807] 1.5576 0.0597 

[26.0689] 

hE 2.6317 0.0154 
[171.2687] 2.3215 0.0127 

[182.7153] 2.1424 0.0192 
[111.3584] 1.8776 0.0156 

[120.5168] 

hη 49.6232 0.9754 
[50.8766] 39.9546 1.3578 

[29.4252] 34.4159 1.0823 
[31.7992] 27.4668 0.7273 

[37.7640] 

ρ -0.3572 0.0313 
[−11.4079] -0.2414 0.0224 

[−10.7837] -0.1692 0.0298 
[−5.6754] -0.1020 0.0221 

[−4.6255] 

Likelihood (L) and  sample  size  

− ln(L) 0.118632E+05 0.178680E+05 0.787168E+04 0.115865E+05 

individuals b/ 661 823 377 587 

censored obs 5152 10726 5513 10513 

uncensored obs 16093 18446 6978 8400 

Experience level (x ∗) for peak earnings and ratio of peak to starting earnings (y ∗/y0) 

x ∗ 23.5447 22.4468 20.7205 21.6840 

y ∗/y0 2.2115 2.4488 2.3797 3.0737 

See text. hμ is the precision 1/σμ, etc.  
(a) μi is a random individual effect; Eit is a random regression error; and, ηi is a second random 

individual effect, which enters the model multiplying years of work experience. 
(b) Males with link to SSA earnings and 1 or more usable observations — see Table A1. 



Table A3A. Female Earnings Dynamics Model Estimates: 
Two Error (μ ,  E) Components; a/ All Ages (including partial retirement) 

Education Group 1 Education Group 2 Education Group 3 Education Group 4 

Parameter Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

β0 8.7412 0.0221 
[395.4140] 9.0134 0.0166 

[542.3137] 8.9933 0.0252 
[357.5594] 9.1250 0.0357 

[255.7884] 

β1 0.0336 0.0019 
[17.5985] 0.0219 0.0013 

[17.0305] 0.0457 0.0019 
[24.1663] 0.0529 0.0027 

[19.4310] 

β2 -0.0958 0.0055 
[−17.3398] -0.0514 0.0035 

[−14.7047] -0.1048 0.0050 
[−21.1378] -0.1342 0.0077 

[−17.5009] 

hμ 2.4068 0.0864 
[27.8458] 2.2360 0.0554 

[40.3472] 2.2493 0.0845 
[26.6199] 1.7050 0.0700 

[24.3709] 

hE 2.1203 0.0168 
[125.9713] 1.9196 0.0098 

[195.5481] 1.8287 0.0136 
[134.6536] 1.5977 0.0142 

[112.4435] 

Likelihood (L) and  sample  size  

− ln(L) 0.631154E+04 0.171316E+05 0.862856E+04 0.746174E+04 

individuals b/ 522 1044 460 379 

censored obs 44 353 237 682 

uncensored obs 8468 20218 9590 6781 

Years experience (x ∗) at peak earnings and ratio peak-to-start earnings (y ∗/y0) 

x ∗ 17.5252 21.3119 21.7867 19.7152 

y ∗/y0 1.3419 1.2632 1.6448 1.6848 

See text. hμ is the precision 1/σμ, etc.  
(a) μi is a random individual effect, Eit is a random regression error, and the two are
 

assumed independent.
 
(b) Females with link to SSA earnings and 1 or more usable observations — see Table A1. 



Table A3B. Female Earnings Dynamics Model Estimates: 
Two Error (μ ,  E) Components; a/ Ages Until Year Before 

Retirement from Full-time Work 

Education Group 1 Education Group 2 Education Group 3 Education Group 4 

Parameter Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

β0 8.7366 0.0229 
[381.8643] 9.0085 0.0168 

[535.8744] 8.9908 0.0254 
[354.2812] 9.1244 0.0360 

[253.6187] 

β1 0.0339 0.0019 
[17.5115] 0.0227 0.0013 

[17.5370] 0.0464 0.0019 
[24.4712] 0.0532 0.0027 

[19.4575] 

β2 -0.0959 0.0056 
[−17.1736] -0.0530 0.0035 

[−15.1250] -0.1064 0.0050 
[−21.4063] -0.1346 0.0077 

[−17.4927] 

hμ 2.3924 0.0882 
[27.1176] 2.2521 0.0568 

[39.6633] 2.2544 0.0856 
[26.3314] 1.7043 0.0705 

[24.1835] 

hE 2.1180 0.0171 
[123.6598] 1.9229 0.0099 

[194.0847] 1.8304 0.0137 
[134.0857] 1.5989 0.0143 

[112.0235] 

Likelihood (L) and  sample  size  

− ln(L) 0.607757E+04 0.168052E+05 0.853570E+04 0.738598E+04 

individuals b/ 489 1004 448 372 

censored obs 44 343 232 661 

uncensored obs 8147 19898 9504 6727 

Years experience (x ∗) at peak earnings and ratio peak-to-start earnings (y ∗/y0) 

x ∗ 17.6795 21.3729 21.8101 19.7469 

y ∗/y0 1.3497 1.2742 1.6585 1.6903 

See text. hμ is the precision 1/σμ, etc.  
(a) μi is a random individual effect, Eit is a random regression error, and the two are
 

assumed independent.
 
(b) Females with link to SSA earnings and 1 or more usable observations — see Table A1. 



Table A4A. Reduced-form Tobit for Male Retirement Age: 
Male Earnings Regression A2B, Female Earnings Regression A3B, 

Exclude Males Ever Self-Employed (1992-2014) 

Education 
Group 1 

Education 
Group 2 

Education 
Group 3 

Education 
Group 4 

Parameter Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

CONSTANT 60.3796 0.3789 
[159.3706] 61.2747 0.2645 

[231.6807] 61.7187 0.4321 
[142.8356] 62.5152 0.3389 

[184.4390] 

COUPLE AGE DIFF -0.1026 0.1465 
[−0.7002] 0.1803 0.1161 

[1.5528] -0.0538 0.1908 
[−0.2820] 0.1352 0.1389 

[0.9734] 

KID=1 2.4547 2.5407 
[0.9662] -2.9012 1.9207 

[−1.5105] 4.6062 4.5892 
[1.0037] 2.3214 2.1025 

[1.1041] 

KID=2+ 2.7931 2.2509 
[1.2409] -3.5321 1.7271 

[−2.0451] 5.0804 4.3192 
[1.1762] 3.3451 1.8383 

[1.8197] 

MARRIAGE DUR -0.2873 0.1045 
[−2.7496] 0.0816 0.0802 

[1.0169] -0.0810 0.1253 
[−0.6467] -0.1587 0.0952 

[−1.6677] 

BRIDGE JOB [Y/N] a/ 2.1727 1.1951 
[1.8181] 0.1253 0.7383 

[0.1697] -0.0524 1.2254 
[−0.0428] -1.4462 0.9404 

[−1.5378] 

MALE E[μ] b/ 1.7368 0.9524 
[1.8235] 1.2974 0.6417 

[2.0219] 0.4720 0.9329 
[0.5060] 1.7589 0.6128 

[2.8703] 

FEMALE E[μ] b/ 0.0372 0.9430 
[0.0394] -0.6192 0.6883 

[−0.8995] 0.1119 1.0463 
[0.1070] -0.6944 0.7124 

[−0.9747] 

DUMMY 1928 9.5929 2.7880 
[3.4407] -2.9101 2.0069 

[−1.4500] 1.9071 3.6015 
[0.5295] 3.6052 2.3916 

[1.5075] 

DUMMY 1929 10.0614 2.8124 
[3.5775] -1.7824 1.8113 

[−0.9841] 1.7078 2.9571 
[0.5775] 1.3468 2.4237 

[0.5557] 

DUMMY 1930 9.7577 2.5429 
[3.8372] -1.9391 1.7409 

[−1.1139] 0.2366 2.8712 
[0.0824] 2.4930 1.8786 

[1.3271] 

DUMMY 1931 8.5998 2.5310 
[3.3978] -1.6589 1.5937 

[−1.0409] 0.8567 2.5153 
[0.3406] 1.4422 1.7659 

[0.8167] 

DUMMY 1932 9.6697 2.4112 
[4.0103] -2.5718 1.5190 

[−1.6931] -3.1901 2.4761 
[−1.2884] -0.9531 1.7646 

[−0.5401] 

DUMMY 1933 4.3448 2.3436 
[1.8539] -1.0418 1.5334 

[−0.6794] 1.5031 2.6360 
[0.5702] 1.1644 1.8941 

[0.6147] 

DUMMY 1934 7.7844 2.4424 
[3.1872] -3.1241 1.4959 

[−2.0885] 0.5520 2.5224 
[0.2188] 1.7930 1.6729 

[1.0718] 

DUMMY 1935 6.3913 2.3566 
[2.7121] -1.5171 1.4866 

[−1.0205] 2.1314 2.4512 
[0.8695] 0.4806 1.6416 

[0.2928] 

DUMMY 1936 7.2513 2.4037 
[3.0167] -1.0503 1.4094 

[−0.7452] -0.3582 2.5555 
[−0.1402] 1.7058 1.6985 

[1.0043] 

DUMMY 1937 5.8696 2.2687 
[2.5872] -0.1835 1.4416 

[−0.1273] -1.9795 2.3102 
[−0.8569] -1.3490 1.6285 

[−0.8283] 

DUMMY 1938 8.1973 2.3946 
[3.4232] -0.4636 1.4418 

[−0.3215] 1.7658 2.2787 
[0.7749] 0.7190 1.6016 

[0.4490] 

DUMMY 1939 7.2189 2.4382 
[2.9608] -1.2205 1.3436 

[−0.9084] 0.7585 2.2071 
[0.3437] 2.0571 1.6562 

[1.2421] 

DUMMY 1940 6.0403 2.4106 
[2.5057] -2.1219 1.4426 

[−1.4709] 0.2772 2.3871 
[0.1161] 1.4540 1.5678 

[0.9274] 

hE ≡ 1/σE 0.1492 0.0063 
[23.6765] 0.1848 0.0066 

[28.0021] 0.1765 0.0100 
[17.7109] 0.1816 0.0083 

[21.8895] 

Likelihood (L) and  sample  size  

− ln(L) 0.980373E+03 0.124463E+04 0.516244E+03 0.787049E+03 

households 348 463 194 282 

See text. 
(a) I.e., male had bridge job after partial retirement. 
(b) μ from Tables A2B and A3B — see text. 



Table A4B. Reduced-form Tobit for Male Retirement Age: 
Male Earnings Regression A2B, Female Earnings Regression A3B, 

Include Males Ever Self-Employed (1992-2014) 

Education 
Group 1 

Education 
Group 2 

Education 
Group 3 

Education 
Group 4 

Parameter Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

CONSTANT 61.0806 0.3143 
[194.3119] 61.6502 0.2287 

[269.5235] 62.2341 0.3549 
[175.3697] 62.8088 0.2831 

[221.8482] 

COUPLE AGE DIFF -0.1055 0.1148 
[−0.9189] 0.1378 0.1026 

[1.3432] -0.0735 0.1236 
[−0.5945] -0.0120 0.1198 

[−0.1004] 

KID=1 1.8025 2.1925 
[0.8221] -2.1785 1.6266 

[−1.3393] 1.8743 2.4999 
[0.7497] 0.5208 1.8961 

[0.2747] 

KID=2+ 2.2175 1.9696 
[1.1259] -3.1836 1.4192 

[−2.2433] -0.0489 2.2825 
[−0.0214] 2.5253 1.6988 

[1.4866] 

MARRIAGE DUR -0.3219 0.0896 
[−3.5935] 0.0536 0.0713 

[0.7517] -0.0263 0.0916 
[−0.2874] -0.0936 0.0808 

[−1.1581] 

BRIDGE JOB [Y/N] a/ 0.0997 0.8890 
[0.1122] -0.0003 0.5828 

[−0.0006] -0.2199 0.9092 
[−0.2419] -2.2209 0.7013 

[−3.1670] 

EVER SELF-EMPL b/ 3.5456 0.7550 
[4.6959] 1.3967 0.5329 

[2.6210] 1.8425 0.8121 
[2.2688] 0.9423 0.5965 

[1.5799] 

MALE E[μ] c/ 2.3327 0.7741 
[3.0132] 0.9540 0.5633 

[1.6936] 0.6117 0.7129 
[0.8581] 1.2937 0.4537 

[2.8513] 

FEMALE E[μ] c/ -0.7172 0.7666 
[−0.9355] -0.3305 0.5820 

[−0.5679] 0.6502 0.8147 
[0.7981] -0.4047 0.5957 

[−0.6794] 

DUMMY 1928 9.2002 2.3193 
[3.9668] -1.9340 1.8579 

[−1.0410] -0.4784 2.8106 
[−0.1702] 3.9570 2.2231 

[1.7800] 

DUMMY 1929 8.3460 2.2578 
[3.6965] -0.7374 1.5459 

[−0.4770] 0.0352 2.5174 
[0.0140] 1.8282 2.0646 

[0.8855] 

DUMMY 1930 8.2647 2.0246 
[4.0822] -0.7773 1.5270 

[−0.5091] -2.7912 2.3556 
[−1.1849] 3.1288 1.7120 

[1.8275] 

DUMMY 1931 6.7132 1.9631 
[3.4197] -0.9783 1.3690 

[−0.7146] -1.1904 2.0190 
[−0.5896] 1.7015 1.4893 

[1.1424] 

DUMMY 1932 8.3348 1.8685 
[4.4606] -1.1428 1.3034 

[−0.8768] -3.2992 2.0263 
[−1.6282] -0.0341 1.4960 

[−0.0228] 

DUMMY 1933 4.0942 1.8236 
[2.2452] 0.3412 1.2757 

[0.2674] 0.2468 2.1394 
[0.1153] 0.8122 1.5339 

[0.5295] 

DUMMY 1934 6.2301 1.8165 
[3.4297] -1.8133 1.2557 

[−1.4441] -1.7301 2.1294 
[−0.8125] 1.2952 1.3756 

[0.9415] 

DUMMY 1935 5.6146 1.8024 
[3.1151] -0.4955 1.2377 

[−0.4004] -1.4487 1.9783 
[−0.7323] 2.4470 1.3724 

[1.7830] 

DUMMY 1936 5.6327 1.8871 
[2.9848] -1.0265 1.1772 

[−0.8721] -2.0689 2.0657 
[−1.0016] 1.2745 1.4921 

[0.8542] 

DUMMY 1937 5.0527 1.7290 
[2.9223] -0.1999 1.1868 

[−0.1684] -3.0155 1.8788 
[−1.6050] -0.2136 1.3525 

[−0.1579] 

DUMMY 1938 7.4326 1.8629 
[3.9898] -0.0402 1.1962 

[−0.0336] 1.1512 1.9338 
[0.5953] 1.4479 1.3335 

[1.0858] 

DUMMY 1939 6.7037 1.8218 
[3.6798] -0.7600 1.1165 

[−0.6806] -2.0319 1.8105 
[−1.1223] 1.0340 1.3907 

[0.7435] 

DUMMY 1940 4.7300 1.7774 
[2.6611] -1.5562 1.1951 

[−1.3022] -1.2506 1.9542 
[−0.6399] 2.3326 1.3255 

[1.7597] 

hE ≡ 1/σE 0.1564 0.0058 
[27.1900] 0.1825 0.0056 

[32.4409] 0.1777 0.0083 
[21.3127] 0.1687 0.0060 

[27.9800] 

Likelihood (L) and  sample  size  

− ln(L) 0.127557E+04 0.170326E+04 0.749305E+03 0.132946E+04 

households 462 631 282 471 

See text. 
(a) I.e., male had bridge job after partial retirement. 
(a) I.e., male ever self-employed 1992-2014. 
(c) μ from Tables A2B and A3B — see text. 



Table A4C. Reduced-form Tobit for Male Retirement Age: 
Male Earnings Regression A2D, Female Earnings Regression A3B, 

Exclude Males Ever Self-Employed (1992-2014) 

Education 
Group 1 

Education 
Group 2 

Education 
Group 3 

Education 
Group 4 

Parameter Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

CONSTANT 60.3432 0.3725 
[161.9887] 61.2406 0.2565 

[238.7946] 61.6750 0.4106 
[150.1952] 62.4870 0.3166 

[197.3938] 

COUPLE AGE DIFF -0.1136 0.1439 
[−0.7894] 0.1265 0.1129 

[1.1201] -0.0403 0.1817 
[−0.2217] 0.0600 0.1300 

[0.4614] 

KID=1 2.0989 2.5036 
[0.8384] -2.8165 1.8622 

[−1.5125] 5.7860 4.3744 
[1.3227] 2.0934 1.9607 

[1.0677] 

KID=2+ 2.4038 2.2180 
[1.0838] -3.0770 1.6770 

[−1.8348] 6.2528 4.1145 
[1.5197] 3.3250 1.7106 

[1.9438] 

MARRIAGE DUR -0.2419 0.1031 
[−2.3471] 0.1105 0.0779 

[1.4184] 0.0270 0.1219 
[0.2220] -0.0667 0.0899 

[−0.7424] 

BRIDGE JOB [Y/N] a/ 2.3993 1.1788 
[2.0354] 0.6994 0.7254 

[0.9642] 0.0918 1.1622 
[0.0790] -1.1738 0.8796 

[−1.3344] 

MALE E[μ] b/ 1.1603 0.8869 
[1.3083] 0.0933 0.6221 

[0.1500] -0.4902 0.8842 
[−0.5543] -0.3205 0.6181 

[−0.5186] 

MALE E[η] b/ 111.3191 31.9508 
[3.4841] 89.9583 18.5771 

[4.8424] 85.0896 24.4693 
[3.4774] 93.3827 15.2988 

[6.1039] 

FEMALE E[μ] b/ -0.1103 0.9262 
[−0.1191] -0.6179 0.6666 

[−0.9270] 0.2182 0.9933 
[0.2197] -1.1039 0.6678 

[−1.6531] 

DUMMY 1928 9.3305 2.7479 
[3.3955] -2.3401 1.9482 

[−1.2012] 1.1185 3.4213 
[0.3269] 2.5546 2.2381 

[1.1414] 

DUMMY 1929 9.6813 2.7714 
[3.4932] -1.6001 1.7578 

[−0.9103] 0.7818 2.8118 
[0.2781] -0.1113 2.2717 

[−0.0490] 

DUMMY 1930 9.0831 2.5145 
[3.6123] -1.9283 1.6889 

[−1.1417] -0.3705 2.7267 
[−0.1359] 1.1321 1.7732 

[0.6384] 

DUMMY 1931 8.0909 2.4958 
[3.2418] -1.2810 1.5482 

[−0.8274] 0.4030 2.3870 
[0.1688] 0.9976 1.6464 

[0.6059] 

DUMMY 1932 9.1128 2.3834 
[3.8235] -2.2330 1.4753 

[−1.5136] -3.6680 2.3494 
[−1.5613] -1.8488 1.6486 

[−1.1214] 

DUMMY 1933 3.9579 2.3148 
[1.7099] -0.8385 1.4887 

[−0.5632] 1.8273 2.5021 
[0.7303] 0.5452 1.7670 

[0.3085] 

DUMMY 1934 7.3538 2.4116 
[3.0494] -2.4315 1.4589 

[−1.6667] 0.4675 2.3865 
[0.1959] 1.1977 1.5651 

[0.7653] 

DUMMY 1935 5.7348 2.3339 
[2.4571] -1.4235 1.4435 

[−0.9862] 1.3349 2.3230 
[0.5747] -0.0141 1.5356 

[−0.0092] 

DUMMY 1936 6.5009 2.3816 
[2.7296] -0.6184 1.3718 

[−0.4508] -0.5424 2.4260 
[−0.2236] 0.9088 1.5874 

[0.5725] 

DUMMY 1937 5.4259 2.2425 
[2.4195] -0.1099 1.3987 

[−0.0786] -0.9189 2.2128 
[−0.4152] -1.2831 1.5192 

[−0.8446] 

DUMMY 1938 7.5990 2.3642 
[3.2142] -0.3381 1.4012 

[−0.2413] 1.3546 2.1699 
[0.6242] 0.2699 1.4935 

[0.1807] 

DUMMY 1939 7.1866 2.4072 
[2.9854] -0.8848 1.3090 

[−0.6760] 1.8537 2.1156 
[0.8762] 1.5983 1.5480 

[1.0325] 

DUMMY 1940 5.6806 2.3768 
[2.3901] -1.3082 1.4129 

[−0.9259] 0.0088 2.2615 
[0.0039] 1.0790 1.4624 

[0.7378] 

hE ≡ 1/σE 0.1518 0.0064 
[23.6823] 0.1906 0.0068 

[28.0138] 0.1858 0.0105 
[17.6994] 0.1946 0.0089 

[21.9026] 

Likelihood (L) and sample size 

− ln(L) 0.975671E+03 0.123222E+04 0.508298E+03 0.769591E+03 

households 348 463 194 282 

See text. 
(a) I.e., male had bridge job after partial retirement. 
(b) μ and η from Tables A2D and A3B — see text. 



Table A4D. Reduced-form Tobit for Male Retirement Age: 
Male Earnings Regression A2D, Female Earnings Regression A3B, 

Include Males Ever Self-Employed (1992-2014) 

Education 
Group 1 

Education 
Group 2 

Education 
Group 3 

Education 
Group 4 

Parameter Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

Coeffi­
cient 

Std Error 
[T-Stat] 

CONSTANT 61.0483 0.3103 
[196.7568] 61.6260 0.2234 

[275.8963] 62.2155 0.3491 
[178.2054] 62.7821 0.2691 

[233.3170] 

COUPLE AGE DIFF -0.1031 0.1133 
[−0.9099] 0.0914 0.1005 

[0.9096] -0.0855 0.1209 
[−0.7078] -0.0815 0.1142 

[−0.7141] 

KID=1 1.5235 2.1699 
[0.7021] -1.9729 1.5898 

[−1.2410] 1.6181 2.4516 
[0.6600] 0.6081 1.7987 

[0.3381] 

KID=2+ 1.9791 1.9486 
[1.0156] -2.6311 1.3918 

[−1.8905] -0.0963 2.2341 
[−0.0431] 2.7630 1.6087 

[1.7175] 

MARRIAGE DUR -0.2761 0.0892 
[−3.0949] 0.0827 0.0699 

[1.1836] 0.0109 0.0908 
[0.1203] -0.0213 0.0770 

[−0.2762] 

BRIDGE JOB [Y/N] a/ 0.3298 0.8806 
[0.3746] 0.3674 0.5739 

[0.6401] -0.3780 0.8955 
[−0.4221] -1.9223 0.6690 

[−2.8735] 

EVER SELF-EMPL b/ 3.8611 0.7522 
[5.1331] 1.5684 0.5214 

[3.0080] 1.8446 0.7982 
[2.3110] 0.9575 0.5672 

[1.6881] 

MALE E[μ] c/ 1.6756 0.7425 
[2.2566] -0.2047 0.5565 

[−0.3678] -0.3110 0.7485 
[−0.4155] -0.6209 0.4920 

[−1.2619] 

MALE E[η] c/ 111.9718 26.0446 
[4.2992] 71.2566 15.9678 

[4.4625] 42.8893 18.6340 
[2.3017] 78.8924 11.6961 

[6.7452] 

FEMALE E[μ] c/ -0.7293 0.7557 
[−0.9651] -0.3376 0.5675 

[−0.5950] 0.8417 0.8041 
[1.0468] -0.4499 0.5676 

[−0.7926] 

DUMMY 1928 8.8457 2.2927 
[3.8582] -2.0318 1.8145 

[−1.1198] -0.9833 2.7713 
[−0.3548] 2.9777 2.1127 

[1.4094] 

DUMMY 1929 7.6147 2.2425 
[3.3956] -0.8475 1.5099 

[−0.5613] -0.4411 2.4793 
[−0.1779] 0.7050 1.9641 

[0.3590] 

DUMMY 1930 7.4002 2.0197 
[3.6639] -1.1737 1.4940 

[−0.7856] -3.1948 2.3232 
[−1.3752] 1.8039 1.6372 

[1.1018] 

DUMMY 1931 6.1997 1.9450 
[3.1875] -1.2221 1.3390 

[−0.9127] -1.4767 1.9870 
[−0.7432] 0.7524 1.4165 

[0.5311] 

DUMMY 1932 7.6726 1.8605 
[4.1240] -1.3461 1.2745 

[−1.0562] -3.4860 1.9898 
[−1.7519] -1.1800 1.4246 

[−0.8283] 

DUMMY 1933 3.5357 1.8125 
[1.9507] 0.1148 1.2482 

[0.0920] 0.1302 2.1054 
[0.0618] 0.0463 1.4587 

[0.0317] 

DUMMY 1934 5.6366 1.8068 
[3.1197] -1.7368 1.2280 

[−1.4143] -2.0207 2.0942 
[−0.9649] 0.6832 1.3077 

[0.5225] 

DUMMY 1935 4.9542 1.7938 
[2.7618] -0.7017 1.2109 

[−0.5795] -2.0682 1.9552 
[−1.0578] 1.2763 1.3154 

[0.9703] 

DUMMY 1936 4.8754 1.8813 
[2.5915] -1.1859 1.1510 

[−1.0303] -2.4114 2.0336 
[−1.1858] 0.7472 1.4307 

[0.5223] 

DUMMY 1937 4.4535 1.7205 
[2.5885] -0.2948 1.1596 

[−0.2543] -2.5910 1.8559 
[−1.3961] -0.3220 1.2871 

[−0.2501] 

DUMMY 1938 6.8118 1.8479 
[3.6861] -0.3070 1.1705 

[−0.2623] 0.9520 1.9080 
[0.4990] 1.0461 1.2607 

[0.8298] 

DUMMY 1939 6.5982 1.8049 
[3.6557] -0.8924 1.0942 

[−0.8156] -2.0210 1.7793 
[−1.1358] 0.7520 1.3206 

[0.5695] 

DUMMY 1940 4.3766 1.7592 
[2.4878] -1.2661 1.1720 

[−1.0803] -1.4929 1.9198 
[−0.7776] 1.8614 1.2618 

[1.4752] 

hE ≡ 1/σE 0.1585 0.0058 
[27.1854] 0.1869 0.0058 

[32.4323] 0.1806 0.0085 
[21.2925] 0.1778 0.0064 

[27.9510] 

Likelihood (L) and sample size 

− ln(L) 0.127105E+04 0.169088E+04 0.746014E+03 0.130462E+04 

households 462 631 282 470 

See text. 
(a) I.e., male had bridge job after partial retirement. 
(b) I.e., male ever self-employed 1992-2014. 
(c) μ and η from Tables A2D and A3B — see text. 
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