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Abstract 

After dropping for a century, the average retirement age for U.S. males seems to have 
leveled off in recent decades. An important question is whether as future improvements 
in technology cause wages to rise, desired retirement ages will resume their downward 
trend, or not. This paper attempts to use HRS panel data to test how relatively high (or 
low) earnings affect male retirement ages. Our goal is to use cross—sectional earning 
differences to help anticipate likely time—series developments in coming decades. Our 
preliminary regression results show that higher earnings do lead to somewhat earlier 
retirement. Unless additional analysis changes the parameter estimates, the implication is 
that the downward trend in male retirement ages will ultimately return. 
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Life-Cycle Models: Lifetime Earnings and the Timing of Retirement

1. Introduction

After dropping for a century, the average retirement age for U.S. males seems to have
leveled off in recent decades. An important question is whether as future improvements in
technology cause wages to rise, desired retirement ages will resume their downward trend,
or not. This paper attempts to use HRS panel data to test how relatively high (or low)
earnings affect male retirement ages. Our goal is to use cross—sectional earning differences
to help anticipate likely time—series developments in coming decades.

Our theoretical framework is the life—cycle model of household behavior. This pa-
per builds from a general first—order restriction for optimal household retirement based
on a so—called “free endpoint” condition from optimal control theory (e.g., Kamien and
Schwartz [1981]). This condition may be adapted to a wide variety of life—cycle models
and implies that, when choosing its best retirement age, a household balances its loss of
current earnings, converted to units of utility, against its utility gain from retirement. The
free endpoint condition generates our regression equations.

At this stage our tentative conclusion is that higher earnings may lead to earlier
retirement. We believe that we have not yet exhausted the potential of our analysis,
however, and that additional steps, which we outline below, may attenuate this connection.

The organization of this paper is as follows. Section 2 presents our theoretical frame-
work, which is based on the life—cycle model of household behavior. Section 3 uses a first—
order condition for optimal retirement age to derive equations for estimation. Section 4
describes our data. Section 5 presents our estimation procedure and results.1 Section 6
concludes.

2. Basic Framework

We begin with a basic life—cycle framework. We derive our basic optimality condition
for retirement and use it to construct a regression equation. The regression equation is the
basis for this paper’s empirical analysis.

For expositional convenience, begin with a single member household. The household
chooses (i) how much to consume at each age and (ii) the age at which it will retire. Assume
that work options are discrete: employers require full—time work; to obtain reduced work
hours, an individual must retire altogether. The household starts at age and date 0, lives
to age T , and, when not retired, has earnings flow yt. The household solves

max
ct , R

8 R

0

e−ρ·t · u(ct , t , R) dt+ ϕ(aR , R) (1)

1 An earlier version of this paper, presented at the RRC Conference in Washington,
8/2007, employed linearizations and maximum likelihood estimation techniques. The
present version eschews linearizations to obtain more precise results and turns to direct,
nonlinear estimation of first—order conditions based on the method of moments.
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subject to: ȧt = r · at + yt − ct ,

a0 = 0 .

The function ϕ(aR , R) gives post—retirement utility conditional on retirement age R :

ϕ(A , R) ≡ max
ct

8 T

R

e−ρ·t · u(ct , t , R) dt (2)

subject to: ȧt = r · at − ct ,

aT ≥ 0 ,

aR = A .

Formulation I. Our basic formulation of the life—cycle model assumes intratemporal
additivity of consumption expenditure and leisure.2 It assumes that for some γ < 1 and
Γ > 0 ,

u(c , t , R) ≡
⎧⎨⎩

1
γ · [c]γ , if t < R ,

1
γ · [c]γ + Γ , if t ≥ R .

(3)

A household thus enjoys an improved utility function after retirement. Indeed, it is the
prospect of this improvement that causes an agent to retire in the first place.

Analysis. Under Formulation I, this paper’s attention focuses on the magnitude of γ .
As we shall see, it is γ that determines the likely correlation between the magnitude of
earnings and optimal retirement age.

Maximizing in (1)-(2) with respect to consumption is a familiar problem. The solution
is

ct = co · eν·t (4)

where

ν ≡ r − ρ
1− γ , c0 =

Y (R)$ T
0
e−r·s · eν·s ds

, Y (R) =

8 R

0

e−r·s · ys ds .

2 This formulation finds wide use in the existing literature – e.g., Bound et al. [1998],
Rust and Phelan [1997], and Gustman and Steinmeier [1986, 2000].
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Maximizing with respect to retirement age R is a somewhat less common procedure.
We can maximize with respect to R taking (4) as given. This yields our so—called free
endpoint condition (e.g., Kamien and Schwartz [1981], Laitner and Silverman [2005, 2007]):

yR
[cR]1−γ

= Γ . (5)

According to this condition, at the moment of its optimal retirement a household’s loss of
earnings, yR, converted to units of utility through multiplication by the marginal utility
of expenditure, [ct]

γ−1, exactly counterbalances the gain in flow utility Γ from retiring. If
the left—hand side of (5) exceeds the right, the advantage of working longer overwhelms
the advantage of immediate retirement; hence, if the left—hand side exceeds the right, the
household should postpone its retirement beyond the age specified in (5).

Combining conditions (4)-(5), we have a basic equation: at optimal retirement age R,
one has

ln(yR)− (1− γ) · ln
D
Y (R)

i− (1− γ) · Jν ·R− 8 T

0

e−r·s · eν·s dso = ln(Γ) . (6)

Suppose that earnings rise proportionately at every age for later cohorts. Changes in yR
and Y (R) cancel one another. However, if γ ∈ (0 , 1), the second left—hand side term leads
to ever greater retirement ages. If γ < 0, the second term leads to ever earlier retirement
ages. If γ = 0, desired retirement age remains the same.
Formulation II. A second possible formulation has non-separable utility. We specify it
as follows: for some γ < 1 and λ > 1, household flow utility satisfies3

u(c , t , R) ≡
⎧⎨⎩

1
γ · [c]γ , if t < R ,

1
γ · [λ · c]γ , if t ≥ R .

(7)

A household thus enjoys an improved utility function after retirement as every level of
consumption generates a higher level of utility.

The analysis is only slightly different in the context of this paper – in particular,
given this paper’s data set (see below). In the denominator of the expression for c0 above
we need (see, for example, Laitner and Silverman [2005, 2007])8 R

0

e−r·s · eν·s ds+ Λ ·
8 T

R

e−r·s · eν·s ds , Λ ≡ [λ] γ
1−γ .

The free endpoint condition is

3 This formulation also finds wide use in the literature – e.g., variants can be found
in Auerbach and Kotlikoff [1987], Altig et al. [2001], French [2005], Laitner and Silver-
man [2005, 2007], Cooley and Prescott [1995]. See also Hurd and Rohwedder [2003], King
et al. [1988], and Aguiar and Hurst [2005].
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yR
cR

= 1 + λ
γ

1−γ +
1

γ
· [λ γ

1−γ − 1] .

Inspection shows that this is observationally equivalent to (5) when γ = 0 in the latter
(leaving the only difference between the two models in the denominator of the expression
for c0).

In one empirically plausible case, average male retirement age does not change over
time. Then Formulation I leads us to estimate γ = 0. In respects beyond the scope of this
paper – say, households’ response to risk or to changing interest rates – γ = 0 can be
very restrictive. Formulation II, on the other hand, implies a constant average retirement
age over time for any value γ < 1, conceivably giving one latitude to pick values of γ to fit
other aspects of a larger data set.

Given this paper’s primary goal, it henceforth utilizes Formulation I, which is simpler.
If we estimate γ = 0, then future work will turn to potentially richer, non-separable
specifications.

Couples. Empirical prevalence leads us to focus on couples rather than single—adult
households. We consider two cases. Our empirical work at this point, however, focuses on
the first.

No Retirement Complementarity. In one specification, spouses vicariously benefit from
each others utility but their household does not gain additional utility when both are
retired together.

Returning to Formulation I, let the male’s gain from retirement be Γm and the female’s
Γf . To take into account the idea that two adults may be able to live more cheaply than
two singles, let a couple correspond to vt “equivalent adults” (e.g., Tobin [1967]). Let
yf (t , Rf ) be the wife’s earnings, which are 0 for t ≥ Rf (and, perhaps, at other ages).
Similarly, let ym(t , Rm) be the husband’s earnings at household age t. For concreteness,
think of the household’s age as the husband’s age.

First, for a given Rf , think of the household as solving

max
ct , R=Rm

8 R

0

e−ρ·t · vt
2
· Ju( ct

vt
, t, R) + u(

ct
vt
, t, Rf )

o
dt+ ϕ(aR , R) (8)

subject to: ȧt = r · at + ym(t , R) + yf (t , Rf )− ct ,

a0 = 0 ,

where

ϕ(A , R) ≡ max
ct

8 T

R

e−ρ·t · vt
2
· Ju( ct

vt
, t, R) + u(

ct
vt
, t, Rf )

o
dt , (9)

subject to: ȧt = r · at + ym(t , R) + yf (t , Rf )− ct ,
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If all households have the same utility function, then differences in male age—earning profile
shapes (which determine ymR ), in male and female lifetime earnings, and in family compo-
sition profiles (which determine vs , 0 ≤ s ≤ T ) would determine interhousehold differences
in R = Rm. We might set η̃ = 0, or we might assume that η̃ is a random variable (with
mean 0) that reflects measurement error on the left—hand side of (13). Alternatively, we
might assume that heterogeneity of preferences sets the right—hand side of (13) – in the
sense that household i derives pleasure Γm · eηi from male retirement, with ηi an iid sam-
pling from a random variable η̃ with mean 0. In general, this paper adopts the latter
assumption.

Our focus is γ. Accordingly, at this stage we calibrate ν = 0.0273 on the basis of
Laitner and Silverman [2007].7 And, we treat the left—hand side terms in (13) not varying
with retirement age or earnings as a constant α:

α ≡ −J(1− γ) · [ln(vR)− lnD8 T

0

vs · e−r·s · eν·s ds
i
]− ln(Γm)o .

In practice, of course, different households have different numbers of children and different
timing of marriage and fertility. Although our data set has the virtue of measuring such
factors, we leave their inclusion for future work. Our version of (13) is

ln(ymR )− (1− γ) · [ln
D
Y m(R) + Y f (Rf )

i
]− (1− γ) · ν ·R+ α = η̃ . (14)

Although one could think of (14) as implicitly determining R = Rm and then attempt
to apply nonlinear least squares techniques, we estimate first—order condition (14) directly,
using method of moments estimation. Thinking of the left—hand side of (14) as qi(α , γ)
and of the sample size as I, we estimate (α , γ) from a set of moment equations

1

I
·
I3
i=1

qi(α , γ) · nZi = 0 , (15)

where nZi is a vector of instruments. Since we assume E[η̃] = 0, the first component of nZi
can be 1 – in other words,

1

I
·
3
i

qi(α , γ) · 1 = 0 .

To estimate two parameters, however, we need at least one more instrument. Choosing
ln(ymR ) or Y

m(R) would be unsatisfactory because both depend on R, which (implicitly)
is the endogenous variable in our equation. Our choice for a second instruement below is
an index eμi of the earning ability of the male in household i. Although we must estimate
μi, our data set has 20 or more observations of male earnings for most households. We use

nZi ≡
w

1
E[μi]

W
or nZi ≡

w
1

E[eμi ]

W
. (16)

7 The latter estimate comes from Consumer Expenditure Survey data on consumption.
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Our second instrument is hardly unassailable. One might think, for instance, of each
young household as having a vector of characteristics (ηi , μi , η

f
i , μ

f
i , κi), where ηi reflects

male taste for leisure, μi male earning ability, η
f
i female taste for leisure, μ

f
i female earning

ability, and κi taste for children (i.e., desired number of children). There is a distribution
of this vector in the population. We can assume the expected value of the vector in the
population is 0 with little sacrifice of generality since our earning dynamics equation and
(14) include unrestricted constants. The second moments of the vector are a different
matter, however. If e[ηi ·μi] = 0 (or E[ηi ·eμi ] = 0) this paper’s second instrument is valid.
Otherwise, it is not. Future work will investigate alternative instruments.

4. Data

The data set that we use is the Health and Retirement Study (HRS).8 In addition to
demographic information, the HRS provides panel data on the retirement choices of older
Americans. Further, it has lifetime earning records in the form of linked annual Social
Security earning data for many of its men and women.

Male Retirement. The HRS asks men and women twice whether they are retired and
what year they retired. We use the questions in sequence. If either says “retired,” we set
the individual’s R to the minimum of the listed year and the current year. We also check
annual market—work hours in each survey wave.If a retired male subsequently works more
than 1500 hours in a year, we drop his household from our sample – assuming that he
retired but then changed his mind and returned to work.9

Male Earnings. The linked Social Security annual earning figures have the virtue of com-
prehensiveness – annual records go all the way back to 1951 – and of administrative—
record quality. Their disadvantages include right censoring at the Social Security earnings
cap prior to 1981, and censoring at 100000, 250000, or 500000 thereafter (for reasons of
confidentiality); lack of records for non—FICA jobs prior to 1981; and, lack of measure-
ments of work hours. (After 1992, we have bi-annual HRS survey data, including both
earnings and hours.) An additional potential problem, not peculiar to the HRS, is that
earnings immediately prior to retirement might reflect shortened work hours or a period
of disinvestment in human capital in anticipation of retirement.

We proceed as follows. We estimate an earnings dynamics equation for males:

ln(ymit ) = Xit · β + μi + 6it , (17)

where Xit contains a quadratic in experience and time dummies (reflecting technological
progress); the first error component, μi, is a random individual effect; 6it is an annual,
white—noise error that is independent of the individual effect; and, (μi , 6it) is bivariate
normal. We estimate (17) separately for high school and college graduates. We use max-
imum likelihood estimation (MLE). We know which observations are censored, and our
estimation can take that into account as follows. Let

8 This paper uses HRS surveys from 1992-2002.
9 See, for example, Maestas [2004].
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eit = eit(β) ≡ ln(ymit −Xit · β) ,
let observations at times s be uncensored, and let observations at times t be censored.
Then we solve

min
β
{− ln(L)} ,

ln(L) ≡
3
i

ln(Pi) ,

Pi ≡
8 ∞
−∞

pi(μi) dμi ,

pi(μi) ≡
J�
s

φ(eis − μi , h6)
o · J�

t

8 ∞
eit−μi

φ(ξ , h6) dξ
o · φ(μi , hμ) , (18)

where i refers to households and φ(., h) to the normal density function with precision
h. We want (18) to reflect full-time earnings, so we exclude observations with less than
4 quarters of Social Security earning credit for the year, with an earning amount less
than 1500 annual hours times the minimum wage, or within two years of starting work or
retiring.10 In a second approach, we additionally exclude observations (other than the first
or last) adjoining a blank – the worry being that a male might, for example, have taken
a non—FICA job and started or finished that job in the middle of a year – and males
with less than 10 earning observations. Table A1 in the Appendix presents details on our
sample size; Table A2 presents our earning—dynamics regression results.

Our next step predicts male earnings at every working age from (17). This has the
advantage of overcoming censoring, imputing earnings from non—FICA jobs, and avoid-
ing potential understatement of earning ability immediately prior to retirement (see the
warning above). It has the potential disadvantage of overstating earnings during periods
of unemployment or part-time work. Our measure of Y m(Rm) is the present value, with
interest rate r = 0.04, at age 50 of male earnings between the age of starting work and
Rm.

In fact, by no means all males reach retirement in the survey data. We adapt our
first—order condition to encompass this below. Furthermore, we write Y m(S) to mean
the present value at age 50 of lifetime male earnings if the male reaches retirement in the
survey, or earnings up to the maximum age the male attains in the survey data if the latter
is short of his retirement age. Similarly for ymS and Y f (S).

The correction for censoring seems to make a substantial difference (although our
“tighter” samples, somewhat surprisingly, do not). In the high school educated sample,
out of 11,620 observations, 3564 are censored and our imputations are higher in 2663
cases.11 The average increase for the prediction for the 3564 censored figures is about 15

10 We assume a male with ED years of education starts work at age = min {ED+6, 18}.
11 Sampling variation means that not all of the predicted values are higher than the
corresponding observation.
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percent. Average male lifetime earnings up to retirement – or the last age observable in the
survey – in present value at age 50, is $1,823,000. (We use HRS household weights for all
averages.) The tighter sample generates average total earnings of $1,820,000. For college—
educated males, there are 3039 censored observations among the 7709 total. Imputations
are higher for 2722 cases. Comparing predictions to the original 3039 censored cases, we
find almost a 39 percent increase. Average present value male earnings are $2,634,000 for
this group. For the tighter sample of college males, the predicted average present value of
Y m(S) is $2,718,000.

Women’s Earnings. We do not filter female earnings below the minimum wage, with fewer
than four Social Security quarters per year, or early or late in career. Thus, for the basic
sample of high school educated males, we have 9551 spousal earnings observations – with
positive female earnings for 408 households. For the college—male sample, we have 7152
spousal earning observations – with positive spousal earnings for 330 households. Censor-
ing is much less prevalent: among spouses of high—school educated males, 272 observations
are censored; among spouses of college—males, 333. In the former sample, the present value
at age 50 (for the husband) of average spousal lifetime earnings is $305,000; in the second
sample, the average is $352,000. These are substantial sums, but they are small relative
to male totals. Evidently, women’s earnings play a larger role for the households with
high school educated males. We do not want to impute women’s earnings for years with
none reported, as many women in this generation did not work every year. In the end, we
simply compute the present value (at husband’s age 50) of lifetime female earnings using
observed data points alone.

Distribution of Household Earnings. To estimate (14), we replace ln(ymR ) with
E[ln(ymiS)] where the role of S is described above. We use our earnings dynamics equa-
tion (17), disregarding the short—term shocks 6iS . Then with the notation of (18),

E[ln(ymiS)] = XiS · βm +E[μi] = XiS · βm +
$∞
−∞ μi · pi(μi) dμi

Pi
. (19)

We construct Y
m
(S) from the present value at each age t between starting work and

S of Xit · βm. As always, compute the present value as of male age 50. Then

E[Y m(S)] = Y
m
(S) · E[eμi ] = Y m(S) ·

$∞
−∞ eμi · pi(μi) dμi

Pi
. (20)

Returning to (14), let Y post(S) be the present value at age 50 of male earnings after
retirement. (If the male does not reach retirement in the survey, this is 0. Otherwise, we
take the earnings figures directly from the data, not using the earnings dynamics equation
in this case.) Then

E[ln
D
Y m(S) + Y post(S) + Y f (S)

i
] =

$∞
−∞ ln

D
Y
m
(S) · eμi + Y post(S) + Y f (S)i · pi(μi) dμi

Pi
. (21)
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Finally, our second instrument comes from

E[eμi ] =

$∞
−∞ eμi · pi(μi) dμi

Pi
. (22)

Table A3 in the Appendix provides summary descriptions of key variables.

5. Estimation

We first describe the remainder of our estimation procedure. Then we present out-
comes.

A complication in our estimation arises from the fact that not all males reach retire-
ment within the sample time frame. In one instance, a man becomes disabled and leaves
work at age prior to his optimal retirement age Rm as computed in our model.12 In a
second instance, a man dies before retiring. In a third, our last survey occurs before a
man reaches retirement. We call these cases with S < Rm.13 In the notation of (14)-(15),
when S < Rm for household i, we assume that qi = qi(α , γ) provides an upper bound for
ηi. In other words, we assume that the male has less desire to retire than the level which
would have induced his retirement prior to disability, death, or the last survey. Assuming
η̃ is N(0 , σ2), for households with S < Rm we have

E[ηi] =

$ qi
−∞ η · φ(η , h) dη$ qi
−∞ φ(η , h) dη

(23)

where φ(., h) is the normal density function and h is the precision, h = 1/σ.
To implement (23), we need to estimate σ. For households with S < Rm, we have

E[ηi · ηi] =
$ qi
−∞ η2 · φ(η , h) dη$ qi
−∞ φ(η , h) dη

. (24)

Our complete estimation is then as follows. Define S ≡ min {Rm , last sample age}
and define

qi(α , γ , σ) ≡ E[ln(ymS )]− (1− γ) · E[ln(Y m(S) + Y post(S) + Y f (S))]
− (1− γ) · ν · (S − 50) + α . (25)

We derive our estimate (�α , �γ , �σ) by finding (α , γ , σ) that satisfies three moment equa-
tions. Let

12 If a male classifies himself as “disabled,” and if the year in which he became disabled
preceded his retirement, we assume S < Rm.
13 A buyout offer could induce a similar phenomena, and future drafts will make use of
HRS data on such offers — see, for example, Brown [2002].
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q∗i (α , γ , σ) ≡
⎧⎨⎩ qi(α , γ , σ) , if S ≥ Rmi ,

E[ηi] as in (23) , if S < Rmi .

Then the first two moment equations are

1

I
·
3
i

q∗i (α , γ , σ) · nZi = 0 , (26)

where nZi is as in (16). Let

q∗∗i (α , γ , σ) ≡
⎧⎨⎩ qi(α , γ , σ) · qi(α , γ , σ) , if S ≥ Rmi ,

E[ηi · ηi] from (24) , if S < Rmi .

Then the third moment equation is

1

I
·
3
i

[q∗∗i (α , γ , σ)− σ2] · 1 = 0 . (27)

Table 1 below presents results. For the standard and tight samples of households with
both high school and college—graduate male heads, each �γ is less than 0, though greater
than -0.5. This is true for either set of instruments in (16). The T—statistics are large.

The estimates suggest that higher earnings induce somewhat earlier retirement. The
implied effect is stronger in the samples of households headed by high school graduates.

This is preliminary work, however. Further steps will add a number of additional
covariates. Several reasons to anticipate that final estimates of γ might be even closer to 0
are: (i) correcting earnings for income taxes will tend to lower ymS by a household’s marginal
tax rate and Y m(S) + Y post(S) + Y f (S) by its average tax rate – with the marginal rate
quite possibly tending to be higher relative to the average rate for higher earners; and,
(ii) higher earning households may tend to have fewer children – which will affect (13)
if we stop simplifying through (14). As noted, we need to investigate alternatives to the

second instrument in nZi as well.

6. Conclusion

We have set up a nonstochastic life—cycle model of household behavior and derived
a first—order condition for optimal retirement. Using HRS panel data on older married
couples, including lifetime Social Security earning records for both men and women, we
have derived method of moments estimates of several key parameters. With an additively
separable utility function, we can estimate the additional utility flow accruing to males
after retirement. More important, if we assume that utility is isoelastic in consumption,
the sign of the corresponding exponent parameter predicts whether households with higher
earnings will tend to retire earlier or later. Zero is the borderline case – implying an
optimal retirement age independent of earning level. At this point, all of our results point
toward an isoelastic parameter near zero but negative. A negative parameter implies

12



Table 1. Estimated Coefficients for Equations (26)-(27):
Health and Retirement Study Data 1992-2002a

High School Males College Males
Parameter

Basic Tight Basic Tight
Sample Sample Sample Sample

nZTi = (1, E[μi])

α 11.4824 10.8708 7.4765 7.9573
(S.E.) (1.2168) (1.2526) (0.6460) (0.7232)
[T Stat.] [9.4365] [8.6785] [11.5733] [11.0023]

γ -0.4633 -0.4225 -0.2094 -0.2406
(S.E.) ( 0.08208) ( 0.08449) (0.04260) (0.04755)
[T Stat.] [-5.6446] [-5.0008] [-4.9165] [-5.0603]

σ 0.3196 0.2975 0.2718 0.2796
(S.E.) ( 0.02527) ( 0.02643) (0.01938) (0.02114
[T Stat.] [12.6479] [11.2561] [14.0226] [13.2260]

nZTi = (1, E[e
μi ])

α 11.2557 10.5679 6.7144 7.2246
(S.E.) (1.1452) (1.1610) (0.6138) (0.6893)
[T Stat.] [9.8286] [9.1095] [10.9389] [10.4803]

γ -0.4480 -0.4020 -0.1589 -0.1922
(S.E.) ( 0.07725) ( 0.07825) (0.04060) (0.04546)
[T Stat.] [-5.7995] [-5.1378] [-3.9147] [-4.2280]

σ 0.3160 0.2927 0.2592 0.2680
(S.E.) ( 0.02408) ( 0.02481) (0.01665) (0.01843)
[T Stat.] [13.1223] [11.7952] [15.5650] [14.5401]

Sample Size

DFE 406 377 328 289

a. See text.
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higher earnings tend to lead to earlier optimal retirement age. There are, however, many
interesting steps remaining for the future, and the text outlines how we anticipate that we
will proceed.
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Table A1. HRS Sample Size

Criterion Male ED Years 12 Male ED Years 16-17

Household married only once 2734 2734

Male meets ED criterion 878 670

Spousal age difference ≤ 10 848 649

Number kids ≤ 10 846 649

Male birth year 1926-43 831 634

Both spouses linked SSA records 566 447

Adequate male retirement data 565 447

Retired male never returns to work 454 361

Woman does not work prior 1950 438 353

Male retirement age not < 52 or > 71 412 333

Households with male earnings 411 330

Male earnings observations 11620 7706

Tighter Sample (drop male earnings adjacent to blank; 10 or more figures per male)a

Households in sample 380 294

Male earnings observations 9978 6596

a. See text.
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Table A2. HRS Earnings Regressions: Male ED Years 12

Parameter Regular Sample Tighter Samplea

CONSTANT 9.1544 9.1820
(0.02954) (0.03014)

EXP 0.04553 0.03423
(0.004924) (0.004932)

EXP**2/100 -0.06467 -0.05482
(0.005255) (0.005412)

DUMMY 1951-60 0.000144 0.005393
(0.006187) (0.006365)

DUMMY 1961-65 0.03892 0.04545
(0.006408) (0.006591)

DUMMY 1966-70 0.05017 0.06410
(0.006672) (0.006921)

DUMMY 1971-75 -0.009391 0.000102
(0.006235) (0.006313)

DUMMY 1976-80 -0.03517 -0.02713
(0.005755) (0.005636)

DUMMY 1981-85 -0.005861 0.002436
(0.005481) (0.005364)

DUMMY 1986-90 -0.02082 -0.01667
(0.005654) (0.005489)

DUMMY 1991-95 0.008214 0.005728
(0.007107) (0.006829)

DUMMY 1996+ 0.03297 0.03953
(0.01009) (0.009567)

PRECISION h6 2.7978 2.9907
(0.02306) (0.02606)

PRECISION hμ 2.8770 3.1106
(0.1077) (0.1202)

Summary Statistics

DFE 11606 9964

-ln(Likelihood) 5,576 4,376

a. See text and Table 1.
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Table A2. HRS Earnings Regressions (cont.): Male ED Years 16-17

Parameter Regular Sample Tighter Samplea

CONSTANT 9.4959 9.5520
(0.06844) (0.07560)

EXP 0.0371 0.03800
(0.008198) (0.008801)

EXP**2/100 -0.05846 -0.05472
(0.009326) (0.009729)

DUMMY 1951-60 0.01122 -0.006491
(0.01586) (0.01796)

DUMMY 1961-65 0.06665 0.06867
(0.01229) (0.01370)

DUMMY 1966-70 0.07328 0.07550
(0.01243) (0.01382)

DUMMY 1971-75 -0.003701 -0.000185
(0.01100) (0.01191)

DUMMY 1976-80 -0.05524 -0.05733
(0.009030) (0.009515)

DUMMY 1981-85 0.01592 0.01786
(0.008025) (0.008531)

DUMMY 1986-90 0.004728 0.000344
(0.008093) (0.008546)

DUMMY 1991-95 0.02648 0.01825
(0.009430) (0.009733)

DUMMY 1996+ 0.01445 0.01156
(0.01195) (0.01204)

PRECISION h6 2.6634 2.7875
(0.02895) (0.03202)

PRECISION hμ 1.9494 1.9495
(0.07996) (0.08442)

Summary Statistics

DFE 7692 6582

-ln(Likelihood) 3,461 2,851

a. See text and Table 1.
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Table A3. Sample Characteristicsa

Statistic E[μ] E[eμ] E[Y m(S)] Y f (S)

High School Male

Minimum -1.0258 0.36 519,000 0
Lower Quartile -0.2492 0.77 1,116,000 125,000

Median -0.03420 0.97 1,392,000 261,000
Upper Quartile 0.2179 1.25 1,791,000 429,000
Maximum 1.4194 4.16 5,570,000 1,413,000
Mean -0.02069 1.04 1,473,000 302,000

College Male

Minimum -1.3174 0.27 546,000 0
Lower Quartile -0.3896 0.68 1,315,000 147,000

Median -0.03911 0.97 1,821,000 290,000
Upper Quartile 0.1969 1.22 2,349,000 473,000
Maximum 1.8011 6.12 11,658,000 1,414,000
Mean -0.04365 1.11 2,157,000 353,000

a. See text. Basic samples only.

21



Table A3. Sample Characteristics (cont.)a

Statistic Y post(S) E[ln
D
Y m(S) E[ln(ymS )] E[ymS ]

+Y post(S)
+Y f (S)

i
]

High School Male

Minimum 0 13.51 9.06 9000
Lower Quartile 0 14.14 9.87 19,000

Median 0 14.36 10.11 25,000
Upper Quartile 7000 14.55 10.34 31,000
Maximum 160,000 15.59 11.49 99,000
Mean 7000 14.35 10.11 26,000

College Male

Minimum 0 13.40 9.49 13,000
Lower Quartile 0 14.34 10.39 33,000

Median 0 14.63 10.70 45,000
Upper Quartile 30,000 14.85 10.96 58,000
Maximum 1,739,000 16.27 12.54 283,000
Mean 32,000 14.63 10.72 52,000

a. See text. Basic samples only.
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