# Incorporating Heterogeneity into Default Rules for Retirement Plan Selection

#### Gopi Shah Goda Stanford University and NBER

Colleen Flaherty Manchester University of Minnesota

This research was supported by the Center for Retirement Research at Boston College pursuant to a grant from the U.S. Social Security Administration through the Steven H. Sandell 2009-2010 Grant Program for Junior Scholars in Retirement Research.

#### **Retirement Plan Choice**

**Our Setting**: Large non-profit employer transitioned from DB plan to DC plan in 2002

- One-time, irreversible plan selection decision for future plan accruals
- If no decision was made, employee defaulted into one of the plans

#### **Retirement Plan Choice**

**Our Setting**: Large non-profit employer transitioned from DB plan to DC plan in 2002

- One-time, irreversible plan selection decision for future plan accruals
- If no decision was made, employee defaulted into one of the plans

**Default Rule**: Default option differed by age of employee at date of transition (Sept. 1, 2002)

- Employees defaulted to switch to DC plan if under age 45
- Employees defaulted to remain in DB plan if age 45 or over

#### Overview of Paper

- What is the causal effect of a default on the choice between retirement plans?
  - Enrollment in default plan is 60 p.p. higher than alternative
- How can we arrive at a default policy that maximizes employees' expected utility?
  - We develop a framework to solve for the optimal default rule using a policy where the default plan varies by age
  - Optimal age cutoff that defines this policy is a function of pension plan, firm, and employee characteristics
- How do age-based default policies compare to alternatives?
  - Incorporating heterogeneity by age is likely to significantly improve outcomes
  - Optimal age-based default policy performs best when risk aversion is known and relatively homogenous across employees

#### Overview of Paper

- What is the causal effect of a default on the choice between retirement plans?
  - Enrollment in default plan is 60 p.p. higher than alternative
- How can we arrive at a default policy that maximizes employees' expected utility?
  - We develop a framework to solve for the optimal default rule using a policy where the default plan varies by age
  - Optimal age cutoff that defines this policy is a function of pension plan, firm, and employee characteristics
- How do age-based default policies compare to alternatives?
  - Incorporating heterogeneity by age is likely to significantly improve outcomes
  - Optimal age-based default policy performs best when risk aversion is known and relatively homogenous across employees

#### Overview of Paper

- What is the causal effect of a default on the choice between retirement plans?
  - Enrollment in default plan is 60 p.p. higher than alternative
- How can we arrive at a default policy that maximizes employees' expected utility?
  - We develop a framework to solve for the optimal default rule using a policy where the default plan varies by age
  - Optimal age cutoff that defines this policy is a function of pension plan, firm, and employee characteristics
- How do age-based default policies compare to alternatives?
  - Incorporating heterogeneity by age is likely to significantly improve outcomes
  - Optimal age-based default policy performs best when risk aversion is known and relatively homogenous across employees

Data

#### Regression Discontinuity: Visual Inspection

Figure 1: DC Enrollment Rate by Age



#### RD Estimates of Default on Plan Choice

Estimate  $\tau$  using a 5-year bandwidth around age c = 45:

$$Y_i = \alpha + \tau d_i + \beta (A_i - c) + \gamma (A_i - c) d_i + X'_i \pi + \epsilon_i$$

Table 4: Regression Discontinuity Estimates of DC Plan Enrollment

|                     | (1)      | (2)      | (3)      | (4)      | (5)      |
|---------------------|----------|----------|----------|----------|----------|
| Under 45            | 0.605*** | 0.581*** | 0.601*** | 0.758*** | 0.784*** |
|                     | (0.042)  | (0.082)  | (0.083)  | (0.116)  | (0.110)  |
| (Age - 45)          |          | -0.023   | -0.017   | 0.523*   | 0.644**  |
|                     |          | (0.027)  | (0.027)  | (0.271)  | (0.273)  |
| (Age - 45)×Under 45 |          | 0.035    | 0.038    | -0.578   | -0.727*  |
| ι - ,               |          | (0.043)  | (0.045)  | (0.421)  | (0.426)  |
| Higher Order Terms  | No       | No       | No       | 2, 3     | 2, 3     |
| Controls            | No       | No       | Yes      | No       | Yes      |
| $R^2$               | 0.28     | 0.281    | 0.308    | 0.291    | 0.32     |
| N                   | 353      | 353      | 353      | 353      | 353      |

Notes: Probit model, marginal effects reported. Robust standard errors in parentheses. Controls include hours, wage, work location, and gender and race dummies.

\* p<0.10, \*\* p<0.05, \*\*\* p<0.01.

# Solving for the Optimal Default Policy

We solve for the optimal age-based default policy as follows:

- Construct measures of the value each employee would receive from each plan, taking into account risk and the level of risk aversion
- Aggregate these values under the assumption that employees choose the default plan across all possible age-based default policies
- Schoose the age cutoff to maximize this aggregate default wealth.

We then construct two measures to evaluate the optimal age-based default policy relative to alternative default policies:

- The number of employees who are defaulted into a suboptimal plan
- The average loss in value for these employees, relative to their optimal plan

Finally, we numerically simulate these results for the firm in our setting.

### Assumptions for Simulation: Uncertainty

- Separation Risk (r)
  - Assume a constant hazard rate of exiting the firm each year with  $\overline{r}=\rho=65$
  - Average rate taken from the data

Investment Risk

- Monte Carlo simulation: 1,000 draws of 45-year sequences of returns
- Lognormal distribution of returns with correlation between asset classes based on historical data 
   Monte Carlo Assumptions
- Asset allocation based on target-date fund Asset Allocation

Operational assumptions

- Investment and separation risk are independent
- Distributions do not vary by plan type

#### Assumptions: Employer/Employee Characteristics

**Utility:** Use CRRA utility function with relative risk aversion parameter  $\alpha$  between 0 and 10.

|                                         | Assumption |
|-----------------------------------------|------------|
| Plan Characteristics:                   |            |
| DB Multiplier ( <i>b</i> )              | 2.0%       |
| DC Contribution Rate (c)                | 8.5%       |
|                                         |            |
| Other Parameters:                       |            |
| Real Wage Growth Rate (g)               | 2.0%       |
| Real Discount Rate (d)                  | 1.0%       |
| Separation Hazard $(\Rightarrow p_r^a)$ | 5.0%       |
| Inflation Rate ( <i>i</i> )             | 2.5%       |

#### Certainty Equivalent for Pension Plans

Figure 5: Certainty Equivalent by Age for Different Levels of Risk Aversion



Default Rules for Plan Selection

### Optimal Age-Based Default Policy

Table 6: Age Cutoff under Optimal Age-Based Default Rule

|                    | (1)          | (2)          | (3)     | (4)      |
|--------------------|--------------|--------------|---------|----------|
|                    | $\alpha = 0$ | $\alpha = 2$ | lpha= 5 | lpha= 10 |
| Optimal age cutoff | 44           | 47           | 36      | 20       |

- For α < 4, optimal cutoff between 42 and 47, a range which includes firm's chosen cutoff age of 45.
- Universal DB default optimal only for fairly high levels of risk aversion.
- Interaction between separation risk and investment risk produces non-monotonicity in optimal cutoff as risk aversion increases.

#### Sensitivity to Assumptions

Table 7: Comparative Statics for Optimal Age-Based Default Rule

| Assumptions              | $\alpha = 0$ | $\alpha = 2$ | $\alpha = 5$ | $\alpha = 10$ |
|--------------------------|--------------|--------------|--------------|---------------|
| Baseline                 | 44           | 47           | 36           | 20            |
| 5% DC Contribution Rate  | 36           | 40           | 20           | 20            |
| 10% DC Contribution Rate | 47           | 49           | 42           | 20            |
| 1% DB Multiplier         | 56           | 57           | 56           | 30            |
| 3% DB Multiplier         | 38           | 42           | 20           | 20            |
| 100% Stocks              | 48           | 48           | 20           | 20            |
| 100% Bonds               | 32           | 39           | 33           | 20            |
| 100% Cash                | 20           | 26           | 23           | 20            |
| 0% Separation Hazard     | 40           | 36           | 23           | 20            |
| 10% Separation Hazard    | 46           | 48           | 36           | 20            |
| No Investment Risk       | 40           | 47           | 50           | 50            |
| Double Investment Risk   | 50           | 46           | 20           | 20            |

Additional Sensitivity Results

#### Evaluation of Optimal Age-Based Default

#### Table 8: Measures to Evaluate Optimal Age-Based Default

| α             | Policy                    | Age<br>Cutoff | $N_{\pi}$ | $loss_{\pi}$ |
|---------------|---------------------------|---------------|-----------|--------------|
|               | Universal DB Default      | 20            | 344       | 38.0%        |
| $\alpha = 0$  | Universal DC Default      | 65            | 581       | 34.7%        |
|               | Optimal Age-Based Default | 44            | 9         | 4.0%         |
| $\alpha = 2$  | Universal DB Default      | 20            | 462       | 41.8%        |
|               | Universal DC Default      | 65            | 463       | 34.0%        |
|               | Optimal Age-Based Default | 47            | 6         | 3.6%         |
|               | Universal DB Default      | 20            | 143       | 15.4%        |
| $\alpha = 5$  | Universal DC Default      | 65            | 782       | 33.8%        |
|               | Optimal Age-Based Default | 36            | 9         | 1.0%         |
| $\alpha = 10$ | Universal DB Default      | 20            | -         | _            |
|               | Universal DC Default      | 65            | 925       | 59.5%        |
|               | Optimal Age-Based Default | 20            | -         | _            |

# Evaluation of Optimal Age-Based Default (cont.)

- Relative to default policies that do not incorporate heterogeneity, the optimal age-based default policy:
  - Categorizes significantly fewer employees into a suboptimal plan (<1% vs. 15-85%)
  - Substantially reduces the loss in certainty equivalent for employees who are defaulted into a suboptimal plan (<4% vs. 15-60%)
- Conditioning default on additional characteristics would not significantly change outcomes.

# Evaluation of Optimal Age-Based Default (cont.)

- Relative to default policies that do not incorporate heterogeneity, the optimal age-based default policy:
  - Categorizes significantly fewer employees into a suboptimal plan (<1% vs. 15-85%)
  - Substantially reduces the loss in certainty equivalent for employees who are defaulted into a suboptimal plan (<4% vs. 15-60%)
- Conditioning default on additional characteristics would not significantly change outcomes.
- Caveat: Previous results assume risk aversion is known and same for all employees
  - If  $\alpha$  misestimated by 1, 13-16% defaulted into suboptimal plan with average loss of 10-13%
  - If  $\alpha$  is random, 12% defaulted into suboptimal plan with average loss of 14%; less if heterogeneity in  $\alpha$  is due to age

#### Conclusions

Effect of default rule on plan enrollment:

Increases probability of enrollment in default plan by 60 percentage points

Numerical simulation of the optimal age-based default policy:

- Incorporating heterogeneity by age is likely to significantly improve outcomes
- Uniform DB default optimal only for higher values of risk aversion
- Optimal age-based default policy performs best if distribution of risk aversion is known

Implications for retirement plan choice:

- Ongoing plan transitions from DB plans to DC plans
  - Among plan closures, 83 percent implement alternative plans, typically DC plans (GAO 2008)
- Some employers offer all new hires a choice between DB and DC plans (e.g., public universities)

#### Conclusions

# Employee Sample

| Table 2: | Summary | Statistics |
|----------|---------|------------|
|----------|---------|------------|

| Variable              | Mean  | Std. Dev. | Min   | Max   |
|-----------------------|-------|-----------|-------|-------|
| Enrolled in DC Plan   | 0.478 | 0.500     | 0     | 1     |
| Made Passive Choice   | 0.543 | 0.498     | 0     | 1     |
| Age                   | 46.07 | 9.72      | 21.88 | 64.96 |
| Female                | 0.188 | 0.391     | 0     | 1     |
| White                 | 0.425 | 0.495     | 0     | 1     |
| Black                 | 0.114 | 0.317     | 0     | 1     |
| Hispanic              | 0.303 | 0.460     | 0     | 1     |
| Other                 | 0.159 | 0.366     | 0     | 1     |
| Hours                 | 39.35 | 3.27      | 20.00 | 55.00 |
| Hourly Wage           | 23.98 | 6.63      | 10.24 | 36.81 |
| Tenure                | 12.08 | 9.12      | 0.75  | 43.41 |
| Primary Work Location | 0.699 | 0.459     | 0     | 1     |



#### Regression Discontinuity: Validation of Assumptions

• Verify no irregularities in distribution of forcing variable at age 45

Figure 2: Distribution of Employee Age





#### Regression Discontinuity: Validation of Assumptions

Confirm smooth distribution of other covariates at age 45
 Figure 3: Average Value of Covariates by Single Year of Age





# Calculating DB Retirement Wealth

Annual retirement benefit in DB plan depends on the firm's DB formula defined by  $b_j(w_j)$  for all service years j between 0 and r - a,

$$w^{DB}(a) = \int_0^{r-a} b_j(w_j) A_
ho dj$$

where

- r is the age of exit from the firm
- a is the worker's current age
- w<sub>i</sub> is the annual wage in year j
- $A_{\rho}$  is the actuarial present value of a stream of \$1 annual payments commencing at age  $\rho$  and paid until death.

▲ back

#### Calculating DC Retirement Wealth

The wealth evaluated at retirement age  $\rho$  in the DC plan as a function of age *a* is:

$$w^{DC}(a) = \int_0^{r-a} c_j w_j e^{\int_j^{
ho-a} \delta(k) dk} dj$$

- c<sub>j</sub> represents employer contributions into the employee's account in year j
- $\delta(k)$  represents sequence of returns in all subsequent years for  $k \in [j, \rho a]$
- r is the age of exit from the firm
- a is the worker's current age
- w<sub>i</sub> is the annual wage in year j

▲ back

### Sources of Variability and Risk

#### Separation risk (uncertainty in r):

- Stems from voluntary and involuntary separations
- Affects risk in both DB and DC plan

#### Investment risk (uncertainty in $\delta(\cdot)$ ):

- Stems from uncertainty in investment experience
- Affects risk in DC plan only

**Assumption:** r and  $\delta(\cdot)$  drawn from  $h^p(r, \delta | a < r \le \overline{r})$  for plan  $p \in \{DB, DC\}$ .

#### Expected Utility and Certainty Equivalent

For a discount rate d the expected utility is given by:

$$\begin{split} & EU(w^{DB}(a)) \quad = \quad \int_{a}^{\bar{r}} \frac{U(w^{DB}(a))}{(1+d)^{\rho-a}} h^{DB}(r,\delta|a < r \leq \bar{r}) dr \\ & EU(w^{DC}(a)) \quad = \quad \int_{-\infty}^{\infty} \int_{a}^{\bar{r}} \frac{U(w^{DC}(a))}{(1+d)^{\rho-a}} h^{DC}(r,\delta|a < r \leq \bar{r}) dr d\delta. \end{split}$$

Define the certainty equivalent wealth for plan  $p \in \{DB, DC\}$  as:

$$CE^p(a) = U^{-1}(EU(w^p(a)))$$

- Individual indifferent between receiving the amount CE<sup>p</sup>(a) for certain and the gamble characterized by the uncertain income stream from plan p
- Plan  $\tilde{p}$  is preferable to plan  $\hat{p}$  if and only if  $CE^{\tilde{p}}(a) > CE^{\hat{p}}(a)$

◀ back

#### Measures to Evaluate Age-Based Default Policies (cont.)

Let  $\pi$  denote one of three potential policies: {universal DB default policy, universal DC default policy, optimal age-based default policy}.

Define  $N_{\pi}$  to be the number of employees defaulted into a suboptimal plan under policy  $\pi$ , and  $loss_{\pi}$  to be the average relative loss in certainty equivalent for these employees.

The values  $N_{\pi}$  and  $loss_{\pi}$  are constructed as follows:

$$N_{\pi} \equiv \int_{\underline{a}}^{\overline{a}} \mathbf{1}_{\left[\overline{CE} > CE_{\pi}\right]} da \qquad loss_{\pi} \equiv \frac{\int_{\underline{a}}^{\overline{a}} \frac{\overline{CE} - CE_{\pi}}{\overline{CE}} da}{N_{\pi}}$$

where  $\overline{CE} = \max(CE^{DB}, CE^{DC})$  and  $CE_{\pi}$  represents the certainty equivalent of the plan specified as the default under policy  $\pi$ .

▲ back

#### Default Rules that Account for Firm Costs

Alternative #1: Firm solves two-stage problem

$$a^{**} = rg\max_{\widetilde{a}} \int_{\underline{a}}^{\widetilde{a}} \left( \mathsf{C}\mathsf{E}^{\mathsf{DC}}(a) - \mathsf{C}\mathsf{E}^{\mathsf{DB}}(a) 
ight) da$$

subject to pre-specified budget constraint for deferred compensation (B):

$$\int_{\underline{a}}^{a^{**}} FC^{DC}(a) da + \int_{a^{**}}^{\overline{a}} FC^{DB}(a) da \leq B,$$

which is equivalent to the initial problem if constraint does not bind.

Alternative #2: Social Planner's Problem

$$a^{***} = rg\max_{\tilde{a}} \int_{\underline{a}}^{\tilde{a}} \left[ \left( CE^{DC}(a) - FC^{DC}(a) \right) - \left( CE^{DB}(a) - FC^{DB}(a) \right) \right] da$$

The first order condition equates marginal benefits accrued to employees to marginal costs incurred by firm.

Gopi Shah Goda and Colleen F. Manchester

Default Rules for Plan Selection

#### Assumptions: Monte Carlo

|                                                          | Assumption |          |  |
|----------------------------------------------------------|------------|----------|--|
| Real Asset Returns:                                      | $\mu$      | $\sigma$ |  |
| Stocks (Large Firms)                                     | 6.4%       | 18.8%    |  |
| Bonds                                                    | 2.7%       | 9.2%     |  |
| Money Market                                             | 0.7%       | 3.9%     |  |
| Asset Covariances:                                       |            |          |  |
| Stocks-Bonds                                             | 0.4065%    |          |  |
| Bonds-Money Market 0.2033%                               |            |          |  |
| Money Market-Stocks 0.0763%                              |            |          |  |
| Asset Allocation:                                        |            |          |  |
| Fidelity Target-Date Funds ( <i>default allocation</i> ) |            |          |  |

Source: Ibbotson (2008) 
Lack



#### Conclusions

#### Asset Allocation

Figure 4: Asset Allocation by Age



Note: Based on asset allocation of Fidelity Freedom Funds. Lines represent fit using fractional multinomial logit model with fourth-order age terms.

▲ back

# Sensitivity to Assumptions (cont.)

| Assumptions           | $\alpha = 0$ | $\alpha = 2$ | $\alpha = 5$ | $\alpha = 10$ |
|-----------------------|--------------|--------------|--------------|---------------|
| Baseline              | 44           | 47           | 36           | 20            |
| 0% Real Wage Growth   | 45           | 47           | 36           | 20            |
| 4% Real Wage Growth   | 43           | 47           | 36           | 20            |
| 0% Real Discount Rate | 44           | 47           | 36           | 20            |
| 2% Real Discount Rate | 44           | 47           | 36           | 20            |
| 1.5% Inflation        | 42           | 45           | 20           | 20            |
| 3.5% Inflation        | 46           | 49           | 42           | 20            |

▲ back