

Annuities and Life Cycle Asset Allocation

presented by

Raimond H. Maurer

Department of Finance, Goethe University Frankfurt (Germany)

National Press Club Washington, August, 9, 2007

Our Questions

How to help workers and retirees manage their money up to and through retirement?

Portfolio choice across stocks, bonds, (variable) fixed payout life annuities

In view of…

- ♦ Uncertain labor income
- Uncertain capital market returns
- Uncertain time of death (longevity risk)
- Asymmetric mortality believes
- Preexisting DB-Pension-Income (e.g. Public Pension)
- ♥ Different Preferences (Bequest, Risk Aversion, …)
- ♥ etc.

Simple 1-period example: Alternative 1: direct bond investment Alternative 2: invest in bonds through annuity

Interest rate: r = 2%	6, survival	l prob.: p = 0	80%
-----------------------	-------------	----------------	-----

	¥				
Initial Investment	Alive	Dead			
(1) 100 (in bond)	100(1+r) ≡102 (Rol ≡ 2%)	100(1+r) ≡102 (Rol ≡ 2%)			
(2) 100 (in annuity)	100(1+r)/p =127.5 (Rol=27.5%)	0 (Rol= -100%)			

End-of-vear pavoff (Rol)

Survival Credit = 25.5 (compensation for no bequest)

Annuity Mechanics II - Life Annuity vs. Bond Investment

Return on Investment (Conditional on Death)

Current Yield p.a. (Conditional on Surv.)

The Multi-Period Life-Cycle Model

Household: Rational dynamic utility optimizer (female)

- Uncertain labor income (profile: high school education)
- Setirement from age 65 on (public pension fraction of last salary)
- Uncertain time of death: age 20-100 based on empirical mortality
- Borrowing restrictions

Capital & Insurance markets

- 🄄 🗞 😓 😓 😓 🗞 Sharek Share
- ♣ Risky stocks: expected return 6% p.a. with standard deviation 18%
- Life-annuity with immediate fixed payments, **purchase irreversible**
- Derive optimal consumption, investment, and decumulation plan (stocks, bonds, and annuities) over the life cycle by numerical dynamic optimization

Expected Life-Cycle Profile – Base Case

- Gradual shift from liquid savings to illiquid annuities
- Start to buy annuities at age 43
- First crowding out of bonds then of stocks
- Full annuitization at age 78

No Costs / No Bequest Motive

Expected Life-Cycle Profile

Bequest effect: additional liquid wealth motive, but still substantial annuity demand

Robustness Analysis of Annuity Demand

	Ann	Annuity fraction (%)				
		Age				
Case	30	45	60	75		
Stylized case	0.0	7.8	47.6	93.3		
With costs	0.0	0.0	20.1	64.2		
With bequest	0.0	0.0	17.7	50.0		
Males	0.0	0.1	38.3	51.5		
Bad health	0.0	0.0	8.2	32.9		
Low IES $(\psi = 0.1)$	0.0	0.0	9.0	37.5		
High IES $(\psi = 0.3)$	0.0	0.0	26.2	58.7		
Low RRA $(\rho = 2)$	0.0	0.0	0.0	0.0		
Low pension income $(\lambda = 0.5)$	0.0	0.0	35.0	59.0		
High pension income $(\lambda=1)$	0.0	0.0	3.2	30.8		

Sensitivity of annuity demand regarding to factors can explain the low (voluntarily) demand for annuity (so called **annuity puzzle**):

→ costs, bequest, bad health, low risk aversion, high pension income

Conclusions: Annuities and Life Cycle Asset Allocation

- Endogenizing the annuitization strategy within a life-cycle model shows
 - Sradual purchase optimal
 - ✤ Timing of annuity purchase crucial (Age effect, Wealth effect)
 - ✤ Model is able to predict empirically found timing of annuity purchase
- Survival credit high enough to compensate for illiquidity and lack of equity premium
- Welfare increase equivalent to 10-30% more cash on hand -> annuities finance extra consumption
- Interactions between insurance products and investment portfolios are beneficial to retirement security.
- Outlook for the Model:
 - ♦ Allow for variable (equity linked) payout annuities
 - ♦ Model could be used to add behavioral explanations: e.g. informational costs
 - ✤ Housing, Health & Consumption Shocks, Taxes, Impact of So.Sec

- Should Tax Supported Retirement Savings be used to generate bequest over many generations?
- Should Government protect people for making "bad" spending and investment decision? (Paternalistic Role of Government)
- Some Possible Policy Instrument:
 - → Mandatory Annuitization of Tax Supported Retirement Assets
 - >At a certain age after retirement
 - >As a certain percentage of retirement assets

Policy/Regulatory Relevance – International Evidence

- UK: accumulated occupational pension assets has to be annuitized by age 75
- Germany's "Riester" plans: compulsory switching of asset into annuities at age 85
- Italy, France, Switzerland, Sweden also requirements for mandatory annuitization of tax supported retirement savings
- In the US, annuitization not compulsory for 401(k) / IRA plans Show annuity demand tax laws require minimum distributions to start at age 70¹/₂

Thank You for Your Attention!

For more information see MRRC-WP

- Life Cycle Asset Allocation with Annuity Markets: Is Longevity Insurance a Good Deal? – Horneff/Maurer/Stamos MRRC 2007 - 152
- Money in Motion: Dynamic Portfolio Choice in Retirement Horneff/ Maurer/ Mitchell/ Stamos MRRC 2007 – 152
- Optimizing the Retirement Portfolio: Asset Allocation, Annuitization, and Risk Aversion Horneff/Maurer/Mitchell/Dus MRRC 2006 124

Backup

Annuity Quotes and Mortality Credit

	Age	e 50	Age	65	Age	Age 70		Age 80	
Period Certain	М	F	М	F	м	F	М	F	
0-year	\$514	\$492	\$655	\$605	\$747	\$677	\$1073	\$961	
10-year	\$509	\$490	\$630	\$592	\$694	\$649	\$841	\$812	
20-year	\$498	\$484	\$569	\$555	\$591	\$583	\$585	\$585	

Monthly Income from \$100,000 premium single-life pension annuity Source: Milevsky (2006)

Stylized Case without Administration Costs and Bequest (Figure 1)

Motives to hold liquid wealth: (1) equity premium, (2) buffer stock savings

Age effect: (1) increasing mortality credit (mortality risk), (2) decreasing human capital, and (3) labor income uncertainty

Wealth effect: the higher wealth on hand compared to bond-like human capital, the lower is the stock demand

04/21/2007

Consumption Percentiles with and without Annuity Markets

- "Consumption shortfall" without annuity markets
- With annuity markets: constant level of consumption possible
- Increase in individual welfare

Welfare Analysis: Table III

Equivalent Increase in Financial Wealth: additional financial wealth needed to compensate for the utility loss if no annuities available.

	Age				
Case	60	70	80	90	
Stylized case	14.41	16.00	23.75	49.83	
With costs	9.54	12.79	16.51	31.16	
With bequest	5.69	8.43	14.14	30.07	
Males	5.35	8.95	18.75	41.31	
Bad health	0.96	2.62	6.73	21.74	
Low IES $(\psi = 0.1)$	0.40	1.18	3.68	14.70	
High IES $(\psi = 0.3)$	8.34	11.87	21.30	43.80	
Low RRA $(\rho = 2)$	0.00	0.00	0.42	0.10	
Low pension income $(\lambda = 0.5)$	6.87	8.75	14.18	30.19	
High pension income $(\lambda = 1)$	0.90	2.19	7.64	24.38	