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Introduction

Economic analysis emphasizes the importance of technological change as a determi-

nant of living standards in the long run. A number of the key studies on this topic are

due to Solow [1956, 1957, 1960]. In Solow’s [1956] basic framework, expansion of the labor

force, accumulation of physical capital, and improvements in technology each contribute

to a nation’s growth; however, the model has the strong implication that it is technolog-

ical progress alone that governs the trajectory of living standards over the very long run.

In particular, an economy with no technological progress has stationary living standards;

and, if one economy has technological progress that is, say, twice as fast as another, the

average standard of living in the first will grow twice as rapidly over the long run as in the

second. In Solow, and in subsequent studies, technological change operates by raising the

“effectiveness” of labor, thereby raising the amount of output that each unit of labor can

produce.1 The purpose of the present paper is to ask the following question about this

process: As an empirical matter, does technological progress increase the productivity of

workers evenly, or does it impact young workers the most?

Due to low birth rates and falling mortality, most OECD countries have aging work

forces – in the sense that their proportion of older relative to younger workers is rising

(e.g., Nyce and Schieber [2005]). Concerns about the implications of global aging are

one motive for studying the process through which technological progress affects worker

productivity. At least two questions arise in this regard. (i) If older workers are less

able, or less willing, to absorb new technologies than younger workers, might aging slow

the diffusion of new technologies in an economy? (ii) If older workers are inherently less

productive – perhaps because of declining health status – might aging, in an even more

direct way, reduce an economy’s average per capita output? As our empirical strategy

requires joint consideration of (i)-(ii), this paper investigates both.

A second motive for our study is the key role that lifetime earning patterns play

in economists’ so—called life—cycle model of behavior. The model confronts the difficult

task of explaining household consumption, saving, and labor supply decisions, and it is a

mainstay of economists’ analysis of public policy issues such as Social Security and income—

tax reform. Both the effect of technological progress on productivity at different ages and

inherent differences in productivity at different ages are potentially significant to outcomes

for the life—cycle model.

This paper uses U.S. Census data 1950-2000 and Current Population Survey data

1967-2000 on earnings at various ages and education levels. The paper’s organization

1 See Burmeister and Dobell [1969].



is as follows. Section 2 clarifies the forms that productivity differences at different ages

could take, and Section 3 systematically examines why differences among the forms are

potentially so important. Section 4 presents our evidence and results. Section 5 concludes.

Worker Pro ductivity

Assuming that employers pay wages proportional to each worker’s productivity, the

following discussion illustrates our specific concerns.2

Figure 1 shows the hypothetical wage rate of worker A from the age at which he

starts work, say, s = 0 (which, in practice, might correspond to chronological age 25, for

instance), to the age at which he retires, say, s = R. For the sake of later comparisons,

assume that the economy’s technology is stationary during worker A’s lifetime. Worker A’s

age—0 wage, say, wA0 , reflects the his education, his health status, his natural abilities, and

the technology existing as he starts his career. Following Becker [1974], call the first the

worker’s “human capital from schooling.” Despite the stationary technology, we would

expect worker A’s wage rate to rise with age, at least in his youth, while he accumulates

experience and obtains on—the—job training. Call the sum of his accumulated knowledge

from these sources his “human capital from experience.”

In Figure 1, worker A’s wage profile rises to a peak in middle age and then falls.

The decline might stem from deteriorating health status. Or, it might follow from age—

related changes in human capital. In particular, as a worker ages, day—to—day challenges

presumably contain less and less novelty; thus, his accumulation of human capital from

experience might slow down. And, to the extent that human capital from experience

arises from training that is costly for the worker or his employer, the shorter time horizon

until retirement of older workers may slow accumulation. It is also true that because older

workers tend to have a higher base of existing human capital than their younger colleagues,

incremental benefits from training may be smaller; hence, presumably more training takes

place in youth. Finally, even in an economy with a stationary technology, individuals tend

to move through a succession of jobs – from promotions, firm bankruptcies, production

changes due to variability of consumer taste, geographical displacements, etc. – and with

each move, part of the individual’s existing knowledge becomes less valuable, with the

losses tending to be greater at older ages, when human capital is larger. Even apart from

possible changes in health status, worker A’s wage profile will, therefore, tend to level off

or decline late in life.

2 This paper makes the neoclassical assumption that in practice, each worker’s wage is

proportional to his productivity. It does not explore alternative models – such as seniority

wages – which one might employ in interpreting U.S. data.
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In this paper, we say that the wage profile of worker A manifests his “productiv-

ity independent of technological change” at different ages. We next depict the possible

ways in which technological progress may raise a worker’s productivity. We refer to these

enhancements as “productivity augmentation from technological change.”

Suppose that after the retirement of worker A, technological progress at rate x percent

per year commences for the economy, and sometime later, worker B begins his career.

Figure 1 presents a hypothetical lifetime wage profile for worker B. For ease of comparison,

suppose worker B has the same innate abilities, the same health status, and the same

number of years of schooling as worker A had when he started his career; however, because

of technological progress between generations, worker B has higher effectiveness as he

begins work, and he consequently starts with a higher wage, wB0 > wA0 . Although the

magnitude of wB0 − wA0 is of interest, we also want to know how the difference between

wage profiles for workers A and B changes with the workers’ experience – recalling that

B lives through an era of continuous technological progress, whereas A did not.

First, consider the case that technological change is “specific” to human capital from

schooling. Solow [1960] studied a model in which each machine forever “embodied” the

technology prevalent at the moment it was built – e.g., an office copier machine built in

2005 is superior to one built in 1985 and costing, at the time, the same amount; further-

more, it is quite possible that in order to gain the new features and quality advantages

potentially available in 2005, rather than retrofit an old copier with current innovations,

one must purchase a new machine. If human capital from schooling “embodies” the tech-

nology of its vintage in the same way, technological change that continues in the economy

after worker B begins his career may not affect his productivity. In this case, worker B’s

wage advantage over worker A would tend to be uniform at all ages. Comparison of wage

profiles A and B in Figure 1, with worker B’s profile starting at wB0 and ending at wBR ,

illustrates the case of “specific” technological change.

In the other polar case, technological progress is “general” in the sense that it can

change a worker’s effectiveness regardless of the worker’s age. Worker C in Figure 1

illustrates. Worker C starts at wage wC0 exceeding wA0 because of technological progress

between their starting dates. Worker C’s productivity growth proceeds as he ages because

technological progress is continuous and worker C is continuously able to benefit from

it. (In Solow’s terminology, labor—augmenting progress is “disembodied.”) As worker C

follows the profile from wC0 to w
C
R , technological progress within his lifetime steepens his

profile, causing his relative advantage over A to expand with age; consequently,
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wC0
wA0

<
wCR
wAR

.

Intermediate cases are, of course, possible, and, perhaps, likely. For example, young

workers may generally be more open minded about change, but their flexibility may dimin-

ish with age. In Figure 1, worker C may start with a higher wage than A, the difference may

expand at early ages as C absorbs the continuing technological progress, but the propor-

tionate difference beyond some age may become constant as C loses his willingness/ability

to take advantage of innovations. A description depending on economics rather than phys-

iology could be as follows. Although older workers might be just as good at adopting

innovations, new knowledge is more likely to displace existing knowledge (i.e., existing

human capital) in the case of an older worker. If adopting an innovation is akin to making

an investment, while the gross and net investment of adopting a given innovation may be

nearly equal for a young worker, the net investment may be considerably smaller that the

gross for an experienced worker. This may render the net productivity gain from acquiring

new knowledge considerably smaller, leading to diminished investment on the part of older

workers.

Imp ortance

While there are many reasons why workers’ productivity, and their ability to con-

tinuously renew and increase it, at different ages is potentially important, this section

focuses on two. Namely, we consider the possible impact of global aging on societies’ over-

all productivity, and we evaluate the possible consequences of the nature of productivity

changes over the life cycle for the way that we should model the saving, consumption, and

retirement behavior of households and the risks that they face.

Global aging and labor force productivity. Falling mortality and declining birth rates are

causing the populations and work forces of OECD countries to age. This raises concerns

about future productivity. Nyce and Schieber [2005] write,

“There appears to be a fairly strong inverse relationship between entrepreneurial ac-

tivities and aged dependency [ratios] ... This suggests that aging societies may be

less likely to engage in creative destructive activities that accelerate the adoption of

technological innovations and can ameliorate the effects of capital deepening on rates

of return.” [p. 255]

To take a second example, discussing the work force in Germany, Borsch—Supan [2004]

writes,
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“This fundamental change in the age structure of the working population will have

profound effects on the microeconomics and the sociology of the labor market. The

most important – and most controversial – aspect is the potential effect on labor

productivity. If labor productivity is age dependent, a shift in the age structure will

also bring about a change in aggregate productivity, even if age—specific productivity

were to remain constant. [p. 16]

The first quotation warns that an aging work force may be less eager, or less adept, at

taking advantage of new technologies; the second warns that, apart from technological

change, to the extent that older workers are less productive, aging of a country’s work

force may lower the nation’s average product of labor. This subsection examines both

points.

Suppose that we think of the “effective labor supply” in the economy, Et, as the

product of three terms. Let the height of the lifetime wage profile of worker A in Figure 1,

which registers inherent productivity at different ages s, be p(s). As stated in Section 2,

this gives the “productivity independent of technological change” for workers. Then we

subdivide effective labor as follows:

Et = A
A
t ·AIt · Lt

where the natural labor supply is

Lt ≡
R

0

Nt · e−n·s ds ,

with Nt the number of labor force entrants at time t, n the rate of population growth (so

that Nt · e−n·s is the number of entrants at time t − s), and R the age of retirement; the
average productivity per worker independent of technological progress is

AIt ≡
R

0
p(s) ·Nt · e−n·s ds
R

0
Nt · e−n·s ds

;

and, the augmentation of worker productivity from technological change is

AAt = A
AG
t ≡

R

0
eg·t · p(s) ·Nt · e−n·s ds
R

0
p(s) ·Nt · e−n·s ds

if technological progress is “general” but
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AAt = A
AS
t ≡

R

0 eg·(t−s) · p(s) ·N · e−n·s ds
R

0
p(s) ·N · e−n·s ds

if progress is “specific.”

Consider average productivity independent of lifetime technological progress, AIt . A

lower birth rate raises the proportion of older workers in the labor force at any t; hence,

we study the effect of global aging on AIt by examining what happens if we lower the birth

rate. To gauge the latter, we check the sign of

dAIt
dn

= −
R

0
s ·Nt · e−n·s · p(s) ds
R

0 Nt · e−n·s ds
+

R

0
Nt · e−n·s · p(s) ds
R

0 Nt · e−n·s ds
·

R

0
s ·Nt · e−n·s ds
R

0 Nt · e−n·s ds
. (3)

If the sign is positive, a lower birth rate lowers productivity independent of lifetime tech-

nological progress, and vice versa.

With slight manipulation, equation (3) yields

sgn{dA
I
t

dn
} = sgn{−

R

0
s ·Nt · e−n·s · p(s) ds
R

0 Nt · e−n·s · p(s) ds
+

R

0
s ·Nt · e−n·s ds
R

0 Nt · e−n·s ds
} . (4)

If productivity p(s) rises with age at every age, one could show that the right—hand side

of (4) is negative – the first term on the right side gives the average age of workers

in productivity weighted units; the second is the conventional average age; so, when p(s)

increases in s for all ages, older workers are typically more productive, and the productivity

weighted average age must be higher than the conventional average. In that case, aging

increases average productivity AIt .

Figure 1, and indeed most measurements in the literature, show p(s) declining at

an advanced age. Then the sign in (4) is not clear cut from a theoretical perspective.

Nevertheless, if s̄ is the average age in the labor force, i.e., if

s̄ ≡
R

0
s ·Nt · e−n·s ds
R

0
Nt · e−n·s ds

,

and if

p(s) ≥ 0 all s ,
d p(s)

d s
> 0 all s < s̄ , and p(s̄) ≤ p(s) all s ≥ s̄ , (5)
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the sign of (4) remains unambiguously negative.

Proposition 1. Let s̄ be the average age for workers. Suppose condition (5) holds. Then

dAt
dn

< 0 .

Proof: See Appendix.

Proposition 1 subsumes the case in which p(s) is increasing all s, and condition (5) may

hold in empirically relevant circumstances.

If condition (5) does hold, Proposition 1 shows that, contrary to some fears in the

literature, global aging may tend to raise average productivity. The idea is that a low birth

rate and falling mortality give a country a more experienced work force, for which output

per worker tends to be higher.

Turn next to the issue of labor’s ability at different ages to take advantage of inno-

vations. If human capital is “general” and technological progress proceeds at rate g, the

proportionate effect of more rapid technological progress is the derivative of the logarithm

of AAGt :

d ln(AAGt )

dg
= t .

This effect cumulates over time. With “general” progress, it is insensitive to demography

– in particular, because technological progress affects all ages symmetrically, we have

d2 ln(AAGt )

dndg
= 0 . (6)

Alternatively, suppose that human capital is “specific,” so that the time-t productivity

of workers of age s depends on the state of technology when they entered the labor force,

eg·(t−s). Then we have

d ln(AASt )

dg
= t−

R

0
s · eg·(t−s) ·Nt · e−n·s ds
R

0
eg·(t−s) ·Nt · e−n·s ds

≡ t− s̃ ,

where the second term on the far right is the average age of the productivity—weighted labor

force, which we designate as s̃. Canceling Nt and e
g·t from the numerator and denominator

of s̃, we can see that s̃ is independent of time. In other words, although the enhancement of

the “effectiveness” of the labor force from technological progress cumulates through time
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(as in the case with “general” progress), the degree to which the best technology currently

available has diffused through the economy is less by a constant amount in every year.

This means that the ratio AASt /AAGt is a constant less than one. We have

d2 ln(AASt )

dn dg
=

R

0
s2 · eg·(t−s) ·Nt · e−n·s ds
R

0
eg·(t−s) ·Nt · e−n·s ds

−
R

0
s · eg·(t−s) ·Nt · e−n·s ds
R

0 eg·(t−s) ·Nt · e−n·s ds
·

R

0
s · eg·(t−s) ·Nt · e−n·s ds
R

0 eg·(t−s) ·Nt · e−n·s ds

=

R

0
(s− s̃)2 · eg·(t−s) ·Nt · e−n·s ds

R

0 eg·(t−s) ·Nt · e−n·s ds
≥ 0 . (7)

Hence, aging, which is equivalent here to lowering n, makes the loss from slow diffusion

greater.

We can see that for “productivity augmentation from technological change,” the dis-

tinction between “specific” and “general” technological progress is critical. If progress is

“specific,” expression (7) shows that aging of the work force will lead to reduced produc-

tivity because new knowledge diffuses through new entrants to the labor force. If, on the

other hand, progress is “general,” the ratio of old to young workers is irrelevant to the

economy’s ability to profit from innovations quickly.

To summarize,

Proposition 2. If technological progress is “general,” aging of the labor force does not

influence the positive effect of g on the rate of growth of AAt –

d2AAGt
d dn dg

= 0 .

If, on the other hand, technological progress is “specific,” aging of the labor force diminishes

the positive effect of technological change on the effectiveness of labor –

d2AASt
dn dg

≥ 0 .

Proof: See preceding text.

Life cycle saving. The primary framework that economists use to study households’ con-

sumption, saving, and retirement decisions, and, in particular, potential effects on the
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latter from public policy changes, is the so—called “life—cycle model.” The nature and the

rate of technological progress are very important to the model’s functioning.

In his Nobel Prize lecture about the life—cycle model (a model, which he had played a

large role in developing), Modigliani [1986] implicitly assumes that technological progress is

“specific.” According to the model, a household saves in youth and, especially, middle age

in order to be able to maintain its consumption after retirement. In the most basic version

of the model, households do not receive inheritances or leave bequests. Figure 2 presents

the general pattern that the model predicts. The earnings of the illustrated household,

say, household A, are eAs at age s, its consumption flow is c
A
s , and its stock of assets (net

of debt) is aAs . The household consumes less than its earnings prior to retirement so that

it can maintain its consumption during retirement by drawing down its stock of assets.

The household chooses its retirement age R in view of its tradeoff between more years of

earnings and the corresponding sacrifice of leisure.

Suppose that technological progress begins after household A retires. Assume that the

economy’s technology is stationary during household A’s lifetime. Thereafter, technological

progress begins. We compare the life—cycles of households B and C, which start later, to

A.

Suppose technological progress is “specific.” Although household C’s earning profile is

higher (because of a more recent start) than A’s, the two profiles are parallel with respect

to age. See Figure 3. Household C can adjust its consumption and asset profiles upward in

proportion to its higher earnings. Retirement age need not change. This is the case that

Modigliani [1986] emphasizes.

In Figure 2, technological progress is “general;” thus, household B’s earning profile

is not only higher than A’s, but it is also steeper. If household B has full information, it

will be especially anxious to do its heaviest saving in middle age, when its earnings are

much higher than in youth. For given total of lifetime earnings, household B, to take full

advantage of relatively high wages late in life, may choose to retire later than household A.

Section 4 will show that, in fact, U.S. productivity growth is quite uneven. In addition

to high frequency fluctuations, it is possible to see episodic changes with decadal time spans.

Specifically, productivity growth was rapid 1950-70, slow 1970-1990, and, perhaps, faster

1990-2000.

This paper’s focus has important bearing on the life—cycle model in several dimensions.

First, the shape of the lifetime earning profiles, including the effect of lifetime techno-

logical change on them, is one key determinant of the aggregate amount of life—cycle saving

and wealth accumulation that the model predicts. Modigliani thought that a higher rate

of specific technological progress would tend to increase aggregate saving, say, as a percent
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of total earnings, by lowering the productivity—weighted average age of the population.

His reasoning was that the life—cycle model predicts positive saving for a household in

youth and negative in old age, past retirement. Modigliani, however, treated the saving

rate of households as roughly constant from age 0 to R. If, in practice, household saving

rates are highest in middle age, his argument loses its force. When technological progress

is “general,” the nonlinearity of saving rates prior to retirement is likely to be especially

great.

Aggregate wealth accumulation is at least as interesting. Here the effect of produc-

tivity weighting is always ambiguous because the life—cycle model predicts low wealth for

young and old households but high wealth for ages near retirement. If “general” techno-

logical progress leads households not to acquire wealth until advanced middle age, it could

cause aggregate life—cycle accumulation to be lower (in proportion, say, to total earnings)

when progress is more rapid.

Unfortunately, the connection between technological progress and aggregate saving

and wealth accumulation in the life—cycle model is complicated. Future versions of this

paper accordingly will present calibrated simulations.

A second issue for life—cycle analysis is the potential planning problem that episodic

variability in the rate of technological progress creates for individual households. If progress

is “specific” in terms of its effect on labor, such problems are likely to be minimal. With

“specific” progress, a household discovers the height of its earning profile early in its career,

and the shape is about the same in every generation; hence, a household’s uncertainty is

resolved at a young age. If, on the other hand, technological change is “general,” a young

household does not know the shape or the eventual height of its earning profile. If progress

during its lifetime turns out to be rapid, it will exit middle age with pleasant options: it

may retire early, decide to leave a bequest, and/or raise its consumption level. Conversely,

if technological change is slower than expected, a household’s options late in life are likely

to be unappealing: the household must work longer, immediately cut its consumption, or

cut its consumption a great deal after retirement.

The implications of this paper’s next section for household difficulties in planning

seem unambiguous: for a given degree of variability in technological progress, individual

households face more risk if technological progress is “general” than if it is “specific.”

There are corresponding implications for how one should set up a life—cycle model: if

technological progress is “general,” in practice a household will face risk about the shape

of its lifetime earning profile and the risk will tend to be uninsurable since it depends upon

aggregative technology shocks; however, if progress is “specific,” a household’s risk will

dissolve early in its youth, and a deterministic framework of analysis may suffice.
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Results

After briefly describing our data and statistical model, this section presents prelimi-

nary results.

Data. This paper uses U.S. Census data 1950, 60, 70, 80, 90, 2000 (i.e., PUMS data)

from

http : //www.ipums.umn.edu/usa/

and U.S. Current Population Survey data (i.e., CPS data) 1967, 68,..., 99, 2000 from

http : //www.nber.org/data/current− population− survey − data.html .

We employ wage and salary data on white males for individual ages 25-60 and for the

individual education categories of high school, some college, and college/more. We consider

only full—time workers, using their annual earnings as our dependent variable w below. Our

sample size from the PUMS is 1,205,824; from the CPS, it is 619,629.

This paper adjusts figures from each year in three ways. We make proportional adjust-

ments for the difference between employee compensation and wages/salaries (see NIPA ta-

ble 2.1, rows 2-3) and for the difference between compensation accruals and disbursements

(see NIPA table 1.7.5, row 23).3 Due to growth in employer provided health insurance

and pension benefits, the first adjustment is sizable, especially for 1970-80. The second

adjustment, on the other hand, is small. Finally, we deflate with the GDP price index (see

NIPA table 1.1.4, row 1).

Regression specification. Our basic statistical model provides a three—part description of

male earnings.

Suppose that the compensation of worker i, of age s and education e, at time t is wiest.

As stated, this analysis considers three education groups: high school, some college, and

college (and more). Assuming that members of the groups begin work at age 18, 20, and

22, respectively, we calculate the experience x for each worker. If, for instance, e =“high

3 The NIPA series come from

http : //www.bea.doc.gov/bea/dn/nipaweb/SelectTable.asp?Selected = N .
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school” for the worker above, his experience is x = s − 18. In this way, we convert wiest
to wiext.

We divide ln(wiext) into three components. The first captures a fixed effect associ-

ated with education together with an experience profile registering what Section 2 calls

“productivity independent of technological change.” This paper’s specification of the first

component is

γe0 + γe1 · x+ γe2 ·
x2

10
+ γe3 ·

x3

100
+ γe4 ·

x4

1000
. (8)

The fixed effect is γe0, with normalization γHS0 = 0. The remaining polynomial terms

capture the experience profile’s shape, which may differ for different education groups.

A maintained assumption is that the set of gammas for each education group is time

invariant.

The second component of our regression equation for ln(wiest) encompasses the effect

of technological change at each experience level – what Section 2 calls “productivity

augmentation from technological change.” This paper’s specification is

θ0 · αt−x +
x

u=1

θu · (αt−x+u − αt−x+u−1) (9)

where

θu ≡ (1− u

50
)B , B ≥ 0 . (10)

The parameter αt registers the time—t level of productivity per work hour from cumulative

technological progress – so that αt+1 − αt measures technological progress during year t.
We estimate the parameter B, as well as αt each t.

Consider formulas (9)-(10). If B = 0, we have θu = 1 all u. Then component (9)

equals αt. In other words, B = 0 is the case from Section 2 with “general” technological

progress.

If, on the other hand, B =∞, we have θu = 0 all u ≥ 1. Then component (9) equals
αt−x. This is precisely Section 2’s case of “specific” technological progress, in which only
the level of productivity from technology when one starts work affects one’s earnings.

In between these polar cases, 0 < B < ∞. If B is near 0, θu remains near 1 until

experience is quite large; so, we approximate “general” technological progress. If B = 1,

the effect on one’s wage from year—to—year technological progress diminishes linearly with

one’s experience, with progress midway through one’s career affecting one’s wages about
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half as much as cumulative progress at the outset. For B much larger than, say, 5, only

technological change in the first half—dozen years of one’s career significantly affects one’s

productivity; so, we approximate Section 2’s case of “specific” technological progress. As

stated, B is a parameter to be estimated.

The regression model’s last component is regression error iext. We assume

iext = ξiext + ηt

with

ηt = ρ · ηt−1 + τt ,

(ξ , τ) iid normal, and ρ ∈ (−1, 1).
The complete regression model for ln(wiext) is

ln(wiext) = γe0 + γe1 · x+ γe2 ·
x2

10
+ γe3 ·

x3

100
+ γe4 ·

x4

1000

+ θ0 · αt−x +
x

u=1

θu · (αt−x+u − αt−x+u−1) + iext . (11)

This paper estimates (γ , B , α) using NLLS, treating the error as homoscedastic. Later

drafts will include the full error structure. Since our covariance estimates are incorrect

until we do so, we omit standard deviations and T—statistics from our tables. (Recall,

however, that our sample size is very large.)

Outcomes. Tables 1-2 present preliminary results.

Table 1 provides parameter estimates for a specification including (11) and a second

equation. Despite our sample’s size, it lacks earnings observations for 1951-59, 1961-66, and

years before 1950. To see the role of the latter, note that a 32 year old college graduate

in 1950 began his career in 1940; hence, (11) utilizes α1940, ...,α1950 in estimating his

wages from 1950. Alphas for years without wage observations are potentially very difficult

to estimate. Table 1 employs a second equation to help as follows. Let qt be aggregative

output per labor hour in year t. If we have a Cobb—Douglas aggregate production function,

qt is proportional to labor’s aggregative marginal product. The envelope theorem shows

that the latter equals the marginal product of labor, hence the wage rate, throughout the

economy; therefore, ln(qt) should equal our αt plus the log of the constant of proportionality

between the average and marginal product of labor. Our second equation, accordingly, is
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ln(qt) = ᾱ+ αt + νt , (12)

where ν is an iid error and ᾱ is our additional constant.

Our data for qt is the Bureau of Labor Statistics time series on business output per

hour 1947-2000 – see

http : //data.bls.gov/cgi− bin/dsrv .

This data has the shortcoming of not adjusting labor hours for “quality” – i.e., for expe-

rience, education, and cumulative embodied technological progress – as complete consis-

tency with our model requires. Future drafts will employ a more sophisticated index.

Table 1. Selected Coefficient Estimates Regression Model (11)-(12):
PUMS, CPS, and BLS Data

Aggregate the Separate the Education Categories
Three Education

Para- Categories BAGG Only BHS , BSC , BC

metersa

Ages Ages Ages Ages Ages Ages
25-55 25-60 25-55 25-60 25-55 25-60

γSC0 . . .0643 .0307 .0605 .0272
γC0 . . .3160 .2714 .3112 .2653
α1949 9.2188 9.2009 9.1506 9.1704 9.1531 9.1705
α1959 9.5909 9.5820 9.5052 9.5304 9.5152 9.5398
α1969 9.8599 9.8490 9.7658 9.7857 9.7825 9.8006
α1979 9.8684 9.8701 9.7741 9.8027 9.7849 9.8114
α1989 9.8750 9.8809 9.7848 9.8165 9.7878 9.8173
α1999 9.9148 9.9133 9.8150 9.8404 9.8144 9.8370
BAGG .3269 .2683 .0889 .0709 . .
BHS . . . . .0796 .0681
BSC . . . . .1018 .1032
BC . . . . .4482 .3806

a. Recall that γHS0 = 0.

Table 1 presents three sets of outcomes, each replicated for workers of age 25-55 and

25-60. All columns jointly employ the PUMS, CPS, and BLS data. All six jointly estimate

(11)-(12), with cross—equation restrictions.
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In the first two columns, the dependent variable for (11) is weighted averages of log

wages for (age, year) cells. Coefficients include a single set of gammas – γAGG1 ,...,γAGG4

– and a single B, say, BAGG. The second pair of columns has as dependent variables in

(11) weighted averages of log wages for (age, year, education) cells. There is a full set of

fourteen gammas, γHS1 ,...,γHS4 , γSC0 ,...,γSC4 , γC0 ,...,γ
C
4 . The third pair of columns repeats

the same dependent variable but allows separate parameters B by education, i.e., BHS ,

BSC , and BC . Table 1 presents only selected coefficient estimates for each specification.

Results are as follows. (i) All estimates of alpha show a generally diminishing rate

of technological progress in the U.S. economy. For example, column 1 shows average

productivity increases from technological progress of 37 percent for the decade 1949-59,

27 percent for 1959-69, 1 percent for 1969-79, 1 percent for 1979-89, and 3.5 percent for

1989-99. (ii) Estimates of B are relatively low in all six columns. Consider B = .33

from column 1, for instance. The “weight” on technological progress for an individual just

starting his career is θ0 = 1. In other words, current technological progress increases such

an individual’s personal productivity one—for—one. Twenty years later, the “weight” is

θ20 = (1− 20
50
).33 = .84 .

Hence, about half way through his career, a worker’s productivity still incorporates 84

percent of current technological progress. After 30 years,

θ30 = (1− 30
50
).33 ≈ .74 .

Even after 40 years, by which time the worker is probably at or near retirement,

θ40 = (1− 40
50
).33 ≈ .59 .

(iii) Columns 3-6 associate large earning differences with education differences – men

with some college earn 3-6 percent more than high school graduates; men with college

earn 27-32 percent more than those with high school alone. (iv) Allowing education to

directly affect wages changes our estimate of B appreciably (i.e., compare columns 3-4 with

1-2); allowing different B parameters for different education groups leads to a potentially

interesting pattern with more specificity of technological progress for more educated men.

The latter outcome is not robust in Table 2, however.

Table 2 drops equation (12) and studies results for (11) with separate education groups.

The dependent variables are weighted averages of log wages for (age, year) cells. Again,

we present only selected coefficient estimates.
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Table 2. Selected Coefficient Estimates Regression Model (11):
PUMS and CPS Data; Individual Education Groups

Education Category

Para- High School Some College College/more
metersa

Ages Ages Ages Ages Ages Ages
25-55 25-60 25-55 25-60 25-55 25-60

γe1 .0930 .0874 .1093 .1124 .1168 .1244
γe2 -.0431 -.0380 -.0520 -.0548 -.0522 -.0607
γe3 .0102 .0085 .0119 .0131 .0106 .0142
γe4 -.0010 -.0008 -.0011 -.0012 -.0008 -.0013

α1949 9.2222 9.2691 9.2785 9.2563 9.3820 9.3401
α1959 9.6012 9.6370 9.6599 9.6558 9.7704 9.7233
α1969 9.8078 9.8218 9.8613 9.8521 10.0232 9.9927
α1979 9.8349 9.8483 9.8603 9.8520 10.0188 9.9966
α1989 9.7536 9.7790 9.8481 9.8405 10.1387 10.1248
α1999 9.7382 9.7441 9.8770 9.8561 10.2473 10.2230
B .3961 .0861 .1974 .0813 .1284 .2682

Addendum: Details on “Productivity Independent of Technological Progress”

Experience for 36 37 37 35 50 36
max earn

Max ln(earn) up to .9144 .9040 .9981 .9978 1.1266 1.0780
age 62 less start ln(earn)

ln(earn) at age 62 .8479 .8675 .9724 .9514 1.1266 1.0602
less start ln(earn)

a. Recall that γe0 = 0.

Outcomes are as follows. (i) The gammas are quite similar in all columns. The

table’s addendum shows that productivity independent of technological progress peaks

quite late in life – after 35 or more years of experience in every column. Hence, even in the

complete absence of technological progress, workers would find their (real) wages reaching a

maximum at age 54 or beyond. The second row of the addendum shows that independent of

technological progress, high school graduates would enjoy over their careers wage increases

of about 90 percent from the accumulation of experience alone; similar gains are about 100

percent for men with some college, and about 110 percent for college graduates. Only high
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school graduates find their wages declining by 5 percent or more between their earning

peak and age 62. (ii) As above, the estimates of alpha show large wage increases from

technological progress 1949-69 and much smaller changes thereafter. In fact, different

education groups have different experiences after 1969. Male high school graduates register

a 3 percent gain 1969-79 but a 10 percent loss 1979-99; men with some college have no wage

change from technological progress 1969-99; and, male college graduates have no change

1969-79 but a gain of 20-25 percent 1979-99. This pattern is familiar from the literature

(e.g., Bound and Johnson [1992]), and it potentially complicates the interpretation of

Table 1. (iii) Estimates of B rise with education across columns 2, 4, and 6. This is

reminiscent of Table 1, columns 5-6. However, estimates of B decline with education

across columns 1, 3, and 5. Our verdict at this point is that estimates of B are all quite

small but lack any other robust pattern.

Conclusions. Our tentative conclusions at this point include the following.

(1) Estimates of gamma from Table 2 imply that gains in human capital from experience

drive a worker’s wage upward until well past the midpoint of his career. Proposition 1,

Section 3, then indicates that “aging” of the work force should boost an economy’s

“average productivity per worker independent of technological progress.”

(2) Estimates of B are uniformly low in Tables 1-2. This implies that technological

progress is “general” rather than “specific.” According to Proposition 2, Section 3,

therefore, “aging” of the work force is unlikely to have a large detrimental effect on

“augmentation of worker productivity from technological change.”

(3) Our low estimate of B also points to the desirability of a specification of the life—

cycle model of household behavior that incorporates the risk of unknown rates of

technological progress during each household’s life span.

(4) Since 1970 only college educated men seem to have benefited from technological

progress. Some authors suggest that technological progress has become specific to

education (e.g., Bound and Johnson [1992]). If correct, this would invalidate, or at

least greatly complicate, attempts to provide meaningful linear aggregates of labor

hours from different workers.4

(4) Technological progress, as registered by changes αt+1 − αt, is a latent variable in

equation (11), presenting challenges for estimation. In fact, estimates of αt for years

4 An alternative possibility is that endogeneity of education choices generates selection

biases over time across education groups (e.g., Laitner [2000]), and that this plays a role

in determining the pattern of Table 12’s alphas.
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in which we lack wage data tend to be erratic. Equation (12) helps; however, for

Table 2’s analysis, finding additional data sources is a priority.

Conclusion

This work is preliminary; nevertheless, results at this stage point to several tentative

conclusions. First, “aging” of the U.S. work force seems more likely to increase aggre-

gate productivity – by raising the proportion of laborers with sizable accumulations of

human capital from experience – than to decrease it – by slowing the adoption rate for

innovations. Our preliminary estimates seem to imply that the latter effect is of modest

magnitude. Second, since our preliminary estimates point to “general” rather than “spe-

cific” technological progress (recall Section 2’s definitions), each household faces a problem

of having to predict the course of technological progress over its life span. This means that

households face more risk than otherwise, and it complicates the specification of the life—

cycle model that analysts should employ. Third, when we disaggregate across education

groups, the groups seem to show quite unequal benefits from technological progress after

1980, and this may lead to further challenges in modeling household behavior.
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Appendix

Proof of Proposition 1. Let

µ(s, t) ≡ Nt · e−n·s
R

0
Nt · e−n·s ds

.

Notice µ(s, t) > 0. We have

dAIt
dn

= −[
R

0

(s− s̄) · p(s) · µ(s, t) ds] .

We show the term [.] is non—negative.

We have

R

0

(s− s̄) · p(s) · µ(s, t) ds

=
s̄

0

(s− s̄) · p(s) · µ(s, t) ds+
R

s̄

(s− s̄) · p(s) · µ(s, t) ds

>
s̄

0

(s− s̄) · p(s̄) · µ(s, t) ds+
R

s̄

(s− s̄) · p(s̄) · µ(s, t) ds

=
R

0

(s− s̄) · p(s̄) · µ(s, t) ds

= p(s̄) ·
R

0

(s− s̄) · µ(s, t) ds

= 0 .

This completes the proof.

K-20



K-21



K-22



K-23




