| Introduction | Data | Model | Upcoming Work |
|--------------|------|-------|---------------|
|              |      |       |               |
|              |      |       |               |
|              |      |       |               |

## Happy Together or Home Alone?

A Structural Model of The Role of Health Insurance in Joint Retirement

Dina Guo

15th Annual Joint Conference of the RRC

University of Virginia

August 2, 2013

| Introduction | Data | Model | Upcoming Work |
|--------------|------|-------|---------------|
| ••••••       |      |       |               |
| Motivation   |      |       |               |

## Motivation-Why is Joint Retirement Important?

- Baby-boom → retirement age
- Majority of them are married



| Introduction | Data | Model | Upcoming Work |
|--------------|------|-------|---------------|
| 000000       |      |       |               |
| Motivation   |      |       |               |

## Motivation-Why Health Insurance (HI) is Crucial?



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Delay retirement to keep HI for self or spouse
- $HI \rightarrow$  medical expense
- $HI \rightarrow$  health (correlated within a HH)  $\rightarrow$  preference for leisure

| Introduction | Data | Model | Upcoming Work |
|--------------|------|-------|---------------|
| 000000       |      |       |               |
| Motivation   |      |       |               |
| -            |      |       |               |

### **Research Goals**

### Answer the questions:

- How do cooperatively acting couples make retirement decisions?
- How much and through what channels does health insurance affect household joint retirement decisions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 - のへぐ

| Introduction | Data | Model | Upcoming Work |
|--------------|------|-------|---------------|
| 000000       |      |       |               |
| Motivation   |      |       |               |

## **Literature Review**

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

| Introduction | Data | Model | Upcoming Work |
|--------------|------|-------|---------------|
| 0000000      |      |       |               |
| Motivation   |      |       |               |
|              |      |       |               |

## Literature Review

#### Joint Retirement

- Hurd (1990), Gustman & Steinmeier (2000, 2004), Casanova (2010)
- They have identified:
  - Correlation in tastes for caring needs of one spouse
  - Complementarity in spouses' preferences for leisure
  - Correlation in economic variables: shared income & assets

### **Contributions:**

- Health insurance (own and spousal)
- Correlated spouses' health transitions (source of interdependence within HH)

| Introduction | Data | Model | Upcoming Work |
|--------------|------|-------|---------------|
| 0000000      |      |       |               |
| Motivation   |      |       |               |
|              |      |       |               |

## Literature Review

### Health Insurance (HI) & Labor Supply Decisions

HI & Individual Retirement Decisions: Madrian (1994), Rust & Phelan (1997), French

& Jones (2004,2011), etc.

#### HI & Labor Supply of prime-aged (21-65) Married couples: Olson (1998, 2000),

Royalty & Abraham (2006), etc.

• Either focus on individuals or younger couples' labor supply decisions

HI & Married Couples' Retirement: Kapur & Rogowski (2007), Blau & Gilleskie (2006)

- Don't focus on how (channels through which) HI affect retirement decisions
- Don't differentiate the source(quality) of HI coverage

| Introduction | Data | Model  | Upcoming Work |
|--------------|------|--------|---------------|
| 000000       | 0000 | 000000 |               |
| Motivation   |      |        |               |
|              |      |        |               |

## Contributions

### Contributions

- Consider 3 channels that HI may affect
  - HI → O.O.P. medical expenditure (as been done in the literature)
  - $HI \rightarrow total medical expenditure$
  - $\bullet \ \, \text{HI} \rightarrow \text{health}$
- Interdependence of spouses' health transitions
- Capture the heterogeneity of HI plan characteristics (not only HI coverage matters, quality of HI plan matters too)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

| Introduction | Data | Model | Upcoming Work |
|--------------|------|-------|---------------|
|              | 0000 |       |               |
| Data Sets    |      |       |               |

## Data

| Introduction | Data | Model | Upcoming Work |
|--------------|------|-------|---------------|
|              | 0000 |       |               |
| Data Sets    |      |       |               |
| Data         |      |       |               |

### Primary Data

Health and Retirement Study (HRS)

- Panel survey of individuals over age 50 and their spouses
- Biannual, 9 waves, 1992-2008
- demographics, employment, HH assets, EPHI eligibility

### Supplemental Data

Medical Expenditure Panel Survey (MEPS)

- A large scale survey of families and individuals
- Annually, 1996 present
- Characteristics of HI plans, which vary by firm size and industry

| Introduction | Data<br>⊙⊙●⊙ | Model<br>0000000 | Upcoming Work<br>O |
|--------------|--------------|------------------|--------------------|
| Data Sets    |              |                  |                    |
| HRS          |              |                  |                    |

### Missing Data Problem

EPHI eligibility:

- $\bullet~$  Model HH EPHI coverage choices  $\rightarrow$  All available EPHI plans
- Conditional basis: observed if choose to be covered by own employer

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

### Imputation

- Imputation model which captures the endogenous selection rule
- Using couples in the HRS
- A Pearson-Chi square test-fits data very well

| Introduction | Data | Model | Upcoming Work |
|--------------|------|-------|---------------|
|              | 0000 |       |               |
| Data Sets    |      |       |               |

# Model

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

| Introduction            | Data<br>0000 | Model<br>•••••• | Upcoming Work<br>O |
|-------------------------|--------------|-----------------|--------------------|
| Preference              |              |                 |                    |
| Choice-Specific Utility | Flow         |                 |                    |

• HH utility flow is a weighted sum of both spouses' utility



うして 山口 マイビット ビット 日 うろく

| Introduction<br>0000000 | Data<br>0000 | Model<br>○●○○○○○ | Upcoming Work<br>O |
|-------------------------|--------------|------------------|--------------------|
| Budget Constraint       |              |                  |                    |
| Budget Constraint       |              |                  |                    |

$$C_{t} + s_{t} = \underbrace{A_{t} + Y(rA_{t}, w_{t}, pb_{mt}, pb_{ft}) + ssb_{mt} + ssb_{ft} + TR_{t}}_{\text{HH income}} - \underbrace{\Gamma_{t}}_{\text{Paid HI premium}}$$
$$A_{t+1} = s_{t} - OOP_{mt} - OOP_{ft}$$

うして 山口 マイビット ビット 日 うろく

- $OOP_{it} = TOT_{it} f(TOT_{it}, HICoverage_{it})$ 
  - co-insurance rate; deductible (channel 1)
- *TOT<sub>it</sub>* is endogenously determined by:
  - Demographics: include age, race, etc.and Health
  - Leisure, and HI coverage (channel 2)

| Introduction      | Data | Model  | Upcoming Work |
|-------------------|------|--------|---------------|
|                   |      | 000000 |               |
| Health Transition |      |        |               |

## Joint Health Transitions

### Bivariate Probit Model: (channel 3)

$$\begin{split} H_{mt}^{*} &= X_{t-1}^{'m}\beta_{1}^{m} + HI_{t-1}^{m}\beta_{2}^{m} + H_{ft}^{*}\beta_{3}^{m} + u_{mt} \\ H_{ft}^{*} &= X_{t-1}^{'f}\beta_{1}^{f} + HI_{t-1}^{f}\beta_{2}^{f} + H_{mt}^{*}\beta_{3}^{f} + u_{ft} \end{split}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Divide HHs into 4 subsamples based on their original health statuses:

- GG: both are originally in good health
- BG: only wife is originally in good health
- GB: only husband is originally in good
- BB: both are originally in bad health

| Introduction      | Data | Model  | Upcoming Work |
|-------------------|------|--------|---------------|
|                   |      | 000000 |               |
| Health Transition |      |        |               |

### **Preliminary Results**

| Husband Equation        |           |    |         | Wife Equation           |           |    |         |
|-------------------------|-----------|----|---------|-------------------------|-----------|----|---------|
| Variable                | Estimates |    | Std Err | Variable                | Estimates |    | Std Err |
| Constant                | -1.189    | *  | 0.469   | Constant                | -0.475    |    | 0.391   |
| Hispanic                | -0.304    | ** | 0.057   | Hispanic                | -0.395    | ** | 0.058   |
| Race                    |           |    |         | Race                    |           |    |         |
| white (base)            | omitted   |    |         | white (base)            | omitted   |    |         |
| black                   | -0.189    | ** | 0.043   | black                   | -0.156    | ** | 0.048   |
| others                  | -0.183    | ** | 0.051   | others                  | -0.141    | *  | 0.056   |
| Chronic_disease         | -0.227    | ** | 0.01    | Chronic_disease         | -0.246    | ** | 0.011   |
| age                     | 0.082     | ** | 0.014   | age                     | 0.063     | ** | 0.012   |
| age^2                   | -0.001    | ** | 0.000   | age^2                   | -0.001    | ** | 0.000   |
| Type I HI               | -0.431    | ** | 0.06    | Type I HI               | -0.426    | ** | 0.068   |
| Type II HI              | 0.136     | ** | 0.042   | Type II HI              | 0.123     | ** | 0.04    |
| Education               |           |    |         | Education               |           |    |         |
| Less HS (base)          | omitted   |    |         | Less HS (base)          | omitted   |    |         |
| HS                      | 0.259     | ** | 0.031   | HS                      | 0.326     | ** | 0.035   |
| College & above         | 0.554     | ** | 0.037   | College & above         | 0.573     | ** | 0.047   |
| Wife's latent health    | 0.073     | *  | 0.035   | Husband's latent health | 0.129     | ** | 0.038   |
| correlation coefficient | -0.081    |    |         |                         |           |    |         |

Note: 1) Subsample size: 21885; 2) Double-starred items are statistically significant at the 5% level, and single-starred items are statistically significant at the 1% level. 3) Type I HI represents Medicare below age 64 and Medicaid, while Type II HI represents Medicare above age 64 and private insurance.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

| Introduction      | Data | Model   | Upcoming Work |
|-------------------|------|---------|---------------|
|                   |      | 0000000 |               |
| Health Transition |      |         |               |
|                   |      |         |               |

## **Preliminary Results**

#### Spousal effects on health

|           | Husband Equation     |           |   | Wife Equation           |          |    |
|-----------|----------------------|-----------|---|-------------------------|----------|----|
| Subsample | Variable             | Estimates | ; | Variable                | Estimate | es |
| GG        | wife's latent health | 0.073 *   | , | husband's latent health | 0.129    | ** |
|           |                      | (0.035)   |   |                         | (0.038)  |    |
| BG        | wife's latent health | 0.132 *   | • | husband's latent health | 0.183    | *  |
|           |                      | (0.054)   |   |                         | (0.073)  |    |
| GB        | wife's latent health | 0.077     |   | husband's latent health | -0.025   |    |
|           |                      | (0.076)   |   |                         | (0.064)  |    |
| BB        | wife's latent health | 0.083     |   | husband's latent health | 0.063    |    |
|           |                      | (0.081)   |   |                         | (0.098)  |    |

- For subsamples in which wives are originally in good health, spousal effects are positive & statistically significant
- This is not observed if the wife is originally in bad health
- Might because usually wives take care of their husbands

| Introduction        | Data<br>0000 | Model<br>○○○○○●○ | Upcoming Work<br>O |
|---------------------|--------------|------------------|--------------------|
| Health Transition   |              |                  |                    |
| Preliminary Results |              |                  |                    |

Magnitudes of Spousal effects on health:

| Subsample | Pr[H_m=1 H_f=1] | Pr[H_m=1 H_f=0] | Difference |
|-----------|-----------------|-----------------|------------|
| GG        | 0.89            | 0.84            | 0.05       |
| BG        | 0.33            | 0.28            | 0.05       |
| GB        | 0.83            | 0.77            | 0.06       |
| BB        | 0.33            | 0.23            | 0.10       |
|           |                 |                 |            |
| Subsample | Pr[H_f=1 H_m=1] | Pr[H_f=1 H_m=0] | Difference |
| GG        | 0.92            | 0.88            | 0.04       |
| BG        | 0.85            | 0.82            | 0.03       |
| GB        | 0.34            | 0.24            | 0.10       |
| BB        | 0.31            | 0.22            | 0.09       |

 positive difference means positive effects of health dynamics of one spouse on that of the other one

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

| Introduction      | Data | Model  | Upcoming Work |
|-------------------|------|--------|---------------|
|                   |      | 000000 |               |
| Health Transition |      |        |               |
|                   |      |        |               |

## **Preliminary Results**

### Health Insurance (HI) effects on health

|           | Husband E  | quation |    | Wife Equation |            |         |    |         |
|-----------|------------|---------|----|---------------|------------|---------|----|---------|
| Subsample | Variable   | Estimat | es | Std Err       | Variable   | Estimat | es | Std Err |
| GG        | Type I HI  | -0.431  | ** | 0.06          | Type I HI  | -0.426  | ** | 0.068   |
|           | Type II HI | 0.136   | ** | 0.042         | Type II HI | 0.123   | ** | 0.04    |
| BG        | Type I HI  | -0.303  | ** | 0.064         | Type I HI  | -0.266  | ** | 0.09    |
|           | Type II HI | 0.066   |    | 0.064         | Type II HI | 0.181   | ** | 0.064   |
| GB        | Type I HI  | -0.264  | ** | 0.091         | Type I HI  | -0.43   | ** | 0.071   |
|           | Type II HI | 0.279   | ** | 0.074         | Type II HI | 0.111   |    | 0.061   |
| BB        | Type I HI  | -0.266  | ** | 0.075         | Type I HI  | -0.176  | *  | 0.077   |
|           | Type II HI | 0.076   |    | 0.08          | Type II HI | 0.164   | *  | 0.074   |

- HI1 1 in bad health in the next period, and the effects are significant
- HI1 are only available to people with worst health (disability or lack of health treatment due to low income)
- HI2  $\uparrow$  in good health in the next period

| Introduction  | Data | Model | Upcoming Work |
|---------------|------|-------|---------------|
|               |      |       | •             |
| Upcoming Work |      |       |               |
| Upcoming Work |      |       |               |

- Finish dynamic programming and get estimates (20% left)
- Policy simulations

  - Disentangle different channels through which HI make effects can evaluate HI related policies in multiple dimensions
  - Evaluate how these polices change husband and wife's welfare separately

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●